A079644 a(n) = (n mod sqrtint(n)).
0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 2, 0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 1, 2, 3, 4, 5
Offset: 1
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..1023
Programs
-
Maple
a:= proc(n) local r; r:= isqrt(n); if r^2 > n then r:= r-1 fi; n mod r; end proc: seq(a(n),n=1..100); # Robert Israel, Aug 13 2014
-
Mathematica
A079644[n_]:=Mod[n,Floor[n^(1/2)]]; Array[A079644,200] (* Enrique Pérez Herrero, Oct 06 2011 *) Table[Mod[n,Floor[Sqrt[n]]],{n,110}] (* Harvey P. Dale, Apr 10 2016 *)
-
PARI
a(n)=n%sqrtint(n)
Formula
a(n) = 0 if n or n+1 or 4*n+1 is a square, otherwise a(n) = a(n-1)+1. - Robert Israel, Aug 13 2014
G.f.: Sum_{r>=2} x^(r^2) * (x^r + 1) * ((r-1)*x^(r+1) - r*x^r + x)/(1 - x)^2. - Robert Israel, Aug 13 2014
Extensions
Definition clarified by N. J. A. Sloane, Jan 11 2025
Comments