A079652 Prime numbers using only the curved digits 0, 3, 6, 8 and 9.
3, 83, 89, 383, 389, 683, 809, 839, 863, 883, 983, 3083, 3089, 3389, 3803, 3833, 3863, 3889, 3989, 6089, 6389, 6689, 6803, 6833, 6863, 6869, 6883, 6899, 6983, 8009, 8039, 8069, 8089, 8093, 8363, 8369, 8389, 8609, 8663, 8669, 8689, 8693, 8699, 8803, 8839
Offset: 1
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..11740
- Chris K. Caldwell and G. L. Honaker, Jr., 30689, Prime Curios!
- Chris K. Caldwell and G. L. Honaker, Jr., 90863, Prime Curios!
Programs
-
Maple
N:= 4: # to get all terms with up to N digits Digs:= {0,3,6,8,9}: A:= NULL: for d from 1 to N do C:= combinat[cartprod]([Digs minus {0},Digs $(d-1)]); while not C[finished] do L:= C[nextvalue](); x:= add(L[i]*10^(d-i),i=1..d); if isprime(x) then A:= A,x fi od od: A; # Robert Israel, Aug 31 2014
-
Mathematica
Select[ Range[8850], PrimeQ[ # ] && Union[ Join[ IntegerDigits[ # ], {0, 3, 6, 8, 9}]] == {0, 3, 6, 8, 9} &] Select[Prime[Range[5000]], Intersection[IntegerDigits[#], {1, 2, 4, 5, 7}] == {} &] (* K. D. Bajpai, Sep 01 2014 *) Select[FromDigits/@Tuples[{0,3,6,8,9},4],PrimeQ] (* Harvey P. Dale, Sep 05 2022 *)
Comments