A079739 Primes of the form x^2 + y^2 + 2 (x,y nonnegative).
2, 3, 7, 11, 19, 31, 43, 47, 67, 83, 103, 127, 139, 151, 199, 223, 227, 263, 271, 283, 307, 367, 379, 443, 463, 479, 487, 523, 547, 571, 587, 607, 619, 631, 643, 659, 691, 727, 787, 811, 823, 859, 883, 907, 911, 967, 983, 1019, 1039, 1051, 1063, 1091, 1231
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Maple
S := {}: for x from 0 to 100 do for y from 0 to 100 do S := S union {x^2+y^2+2} od:od:S := sort(convert(S, list)): for i from 1 to 500 do if isprime(S[i]) then printf(`%d,`,S[i]) fi:od: # James Sellers, Feb 25 2003
-
Mathematica
f[upto_]:=Module[{max=Ceiling[Sqrt[upto]]},Select[Select[ Union[Total[#]+2&/@(Tuples[Range[0,max],{2}]^2)], PrimeQ], #<=upto&]]; f[1250] (* Harvey P. Dale, Mar 19 2011 *)
Extensions
More terms from James Sellers, Feb 25 2003