cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A079810 Sums of diagonals (upward from left to right) of the triangle shown in A079809.

Original entry on oeis.org

1, 1, 5, 3, 8, 8, 16, 12, 21, 21, 33, 27, 40, 40, 56, 48, 65, 65, 85, 75, 96, 96, 120, 108, 133, 133, 161, 147, 176, 176, 208, 192, 225, 225, 261, 243, 280, 280, 320, 300, 341, 341, 385, 363, 408, 408, 456, 432, 481, 481, 533, 507, 560, 560, 616, 588, 645, 645
Offset: 1

Views

Author

Amarnath Murthy, Feb 10 2003

Keywords

Examples

			a(7) = T(7,1) + T(6,2) + T(5,3) + T(4,4) = 7 + 2 + 3 + 4 = 16.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 71); Coefficients(R!( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) )); // G. C. Greubel, Dec 12 2023
    
  • Mathematica
    LinearRecurrence[{1,0,0,2,-2,0,0,-1,1}, {1,1,5,3,8,8,16,12,21}, 70] (* G. C. Greubel, Dec 12 2023 *)
  • SageMath
    def A079810_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) ).list()
    a=A079810_list(71); a[1:] # G. C. Greubel, Dec 12 2023

Formula

a(4k) = 3k^2. a(4k+1) = a(4k+2) = 3k^2+4k+1. a(4k+3) = 3k^2+8k+5.
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + 4*x^2 - 2*x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2*(1 + x^2)^2). (End)
From G. C. Greubel, Dec 12 2023: (Start)
a(n) = (1/32)*( (6*n^2 + 14*n + 5) - (-1)^n*(10*n + 9) + 2*((3 - i)*(-i)^n + (3 + i)*i^n) - 8*(-1)^floor(n/2)*floor((n+2)/2) ).
E.g.f.: 4*(1-x)*cos(x) - 4*(2-x)*sin(x) + 2*(3*x^2 + 15*x - 2)*cosh(x) 2*(3*x^2 + 5*x + 7)*sinh(x). (End)

Extensions

Edited by David Wasserman, May 11 2004
Showing 1-1 of 1 results.