cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079824 Sum of numbers in n-th upward diagonal of triangle in A079823.

Original entry on oeis.org

1, 2, 7, 12, 25, 37, 62, 84, 125, 160, 221, 272, 357, 427, 540, 632, 777, 894, 1075, 1220, 1441, 1617, 1882, 2092, 2405, 2652, 3017, 3304, 3725, 4055, 4536, 4912, 5457, 5882, 6495, 6972, 7657, 8189, 8950, 9540, 10381, 11032, 11957, 12672, 13685, 14467, 15572
Offset: 1

Views

Author

Amarnath Murthy, Feb 11 2003

Keywords

Crossrefs

Cf. A000326, A079823, A185787 and A185788 (bisections).

Programs

  • Magma
    [(15+25*n+15*n^2+14*n^3 -3*(-1)^n*(5+3*n+n^2))/96: n in [1..60]]; // G. C. Greubel, Dec 08 2023
    
  • Maple
    A079824aux := proc(n,k)
        A000124(n)+k ;
    end proc:
    A079824 := proc(n)
        local a,k,n0 ;
        n0 := n-1 ;
        a := 0 ;
        for k from 0 to floor(n0/2) do
            a := a+A079824aux(n0-k,k) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 23 2012
  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,2,7,12,25,37,62},60] (* Harvey P. Dale, May 06 2014 *)
  • Python
    def a(n): return (15 + 25*n + 15*(n**2) + 14*(n**3) - 3*(((-1)**n))*(5 + n*(3 + n))) // 96 # Torlach Rush, Aug 14 2022
    
  • SageMath
    [(15+25*n+15*n^2+14*n^3 -3*(-1)^n*(5+3*n+n^2))/96 for n in range(1,61)] # G. C. Greubel, Dec 08 2023

Formula

From Philippe Deléham, Feb 16 2004: (Start)
a(2*n) = (n/6)*(7*n^2 + 3*n + 2);
a(2*n-1) = (n/6)*(7*n^2 - 6*n + 5). (End)
G.f.: x*(1+x+2*x^2+2*x^3+x^4) / ( (1+x)^3*(1-x)^4 ). - R. J. Mathar, Aug 23 2012
From Richard Peterson, Aug 19 2020: (Start)
a(2*n) - a(2*n-1) = A000326(n).
a(2*n+1) - a(2*n) = n^2 + (n+1)^2. (End)
a(n) = (15 + 25*n + 15*n^2 + 14*n^3 - 3*(-1)^n*(5 + n*(3 + n)))/96. - Torlach Rush, Aug 14 2022
E.g.f.: (1/48)*( x*(33 + 27*x + 7*x^2)*cosh(x) + (15 + 21*x + 30*x^2 + 7*x^3)*sinh(x) ). - G. C. Greubel, Dec 08 2023

Extensions

More terms from Jason D. W. Taff (jtaff(AT)jburroughs.org), Oct 31 2003
More terms from Philippe Deléham, Feb 16 2004
Typo corrected by Kevin Ryde, Aug 23 2012