A079825 Sum of numbers in n-th upward diagonal of triangle in A079826.
1, 3, 6, 15, 26, 41, 62, 92, 129, 169, 224, 287, 366, 443, 548, 656, 793, 919, 1090, 1255, 1466, 1653, 1906, 2140, 2441, 2701, 3052, 3367, 3774, 4119, 4584, 4992, 5521, 5963, 6558, 7071, 7738, 8289, 9030, 9660, 10481, 11153, 12056, 12815, 13806, 14611, 15692, 16592
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,2,-2,-2,2,-1,1,1,-1).
Programs
-
Magma
m:=35; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+7*x^3+6*x^4+2*x^5+6*x^6+x^7+x^8)/((x^2+1)^2*(1+x)^3*(x-1)^4))); // Bruno Berselli, Sep 05 2012 -
Magma
[((2*n+1)*(7*n^2+7*n+12) -3*(-1)^n*n*(n-7) +6*(-1)^Binomial(n,2)*(2*n-3*(-1)^n+1))/96: n in [1..41]]; // G. C. Greubel, Dec 10 2023
-
Maple
A079825 := proc(n) local a, k; a := 0 ; for k from 1 to (n+1)/2 do a := a+A056011(n-k+1,k) ; end do: a ; end proc: # R. J. Mathar, Sep 05 2012
-
Mathematica
LinearRecurrence[{1, 1, -1, 2, -2, -2, 2, -1, 1, 1, -1}, {1, 3, 6, 15, 26, 41, 62, 92, 129, 169, 224}, 35] (* Bruno Berselli, Sep 05 2012 *)
-
Maxima
makelist(expand(((2*n+1)*(7*n^2+7*n+12)-3*n*(n-7)*(-1)^n+6*(2*n-3*(-1)^n+1)*%i^(n*(n-1)))/96), n, 1, 35); /* Bruno Berselli, Sep 05 2012 */
-
SageMath
[((2*n+1)*(7*n^2+7*n+12)-3*(-1)^n*n*(n-7)+6*(-1)^binomial( n,2)*(2*n-3*(-1)^n+1))/96 for n in range(1,41)] # G. C. Greubel, Dec 10 2023
Formula
G.f.: x*( 1+2*x+2*x^2+7*x^3+6*x^4+2*x^5+6*x^6+x^7+x^8 ) / ( (1+x)^3*(1-x)^4*(1+x^2)^2 ). - R. J. Mathar, Sep 05 2012
a(n) = ( (2*n+1)*(7*n^2+7*n+12) -3*n*(n-7)*(-1)^n +6*(2*n-3*(-1)^n+1)*i^(n*(n-1)) )/96, where i=sqrt(-1). - Bruno Berselli, Sep 05 2012
E.g.f.: (1/48)*( (6+24*x+30*x^2+7*x^3)*cosh(x) + (6+42*x+33*x^2+7*x^3)* sinh(x) + 6*(x-1)*cos(x) - 6*(x-2)*sin(x) ). - G. C. Greubel, Dec 10 2023