cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079825 Sum of numbers in n-th upward diagonal of triangle in A079826.

Original entry on oeis.org

1, 3, 6, 15, 26, 41, 62, 92, 129, 169, 224, 287, 366, 443, 548, 656, 793, 919, 1090, 1255, 1466, 1653, 1906, 2140, 2441, 2701, 3052, 3367, 3774, 4119, 4584, 4992, 5521, 5963, 6558, 7071, 7738, 8289, 9030, 9660, 10481, 11153, 12056, 12815, 13806, 14611, 15692, 16592
Offset: 1

Views

Author

Amarnath Murthy, Feb 11 2003

Keywords

Crossrefs

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+7*x^3+6*x^4+2*x^5+6*x^6+x^7+x^8)/((x^2+1)^2*(1+x)^3*(x-1)^4))); // Bruno Berselli, Sep 05 2012
    
  • Magma
    [((2*n+1)*(7*n^2+7*n+12) -3*(-1)^n*n*(n-7) +6*(-1)^Binomial(n,2)*(2*n-3*(-1)^n+1))/96: n in [1..41]]; // G. C. Greubel, Dec 10 2023
    
  • Maple
    A079825 := proc(n)
            local a, k;
            a := 0 ;
            for k from 1 to (n+1)/2 do
                    a := a+A056011(n-k+1,k) ;
            end do:
            a ;
    end proc: # R. J. Mathar, Sep 05 2012
  • Mathematica
    LinearRecurrence[{1, 1, -1, 2, -2, -2, 2, -1, 1, 1, -1}, {1, 3, 6, 15, 26, 41, 62, 92, 129, 169, 224}, 35] (* Bruno Berselli, Sep 05 2012 *)
  • Maxima
    makelist(expand(((2*n+1)*(7*n^2+7*n+12)-3*n*(n-7)*(-1)^n+6*(2*n-3*(-1)^n+1)*%i^(n*(n-1)))/96), n, 1, 35); /* Bruno Berselli, Sep 05 2012 */
    
  • SageMath
    [((2*n+1)*(7*n^2+7*n+12)-3*(-1)^n*n*(n-7)+6*(-1)^binomial( n,2)*(2*n-3*(-1)^n+1))/96 for n in range(1,41)] # G. C. Greubel, Dec 10 2023

Formula

G.f.: x*( 1+2*x+2*x^2+7*x^3+6*x^4+2*x^5+6*x^6+x^7+x^8 ) / ( (1+x)^3*(1-x)^4*(1+x^2)^2 ). - R. J. Mathar, Sep 05 2012
a(n) = ( (2*n+1)*(7*n^2+7*n+12) -3*n*(n-7)*(-1)^n +6*(2*n-3*(-1)^n+1)*i^(n*(n-1)) )/96, where i=sqrt(-1). - Bruno Berselli, Sep 05 2012
E.g.f.: (1/48)*( (6+24*x+30*x^2+7*x^3)*cosh(x) + (6+42*x+33*x^2+7*x^3)* sinh(x) + 6*(x-1)*cos(x) - 6*(x-2)*sin(x) ). - G. C. Greubel, Dec 10 2023