A079896 Discriminants of indefinite binary quadratic forms.
5, 8, 12, 13, 17, 20, 21, 24, 28, 29, 32, 33, 37, 40, 41, 44, 45, 48, 52, 53, 56, 57, 60, 61, 65, 68, 69, 72, 73, 76, 77, 80, 84, 85, 88, 89, 92, 93, 96, 97, 101, 104, 105, 108, 109, 112, 113, 116, 117, 120, 124, 125, 128, 129, 132, 133, 136, 137, 140, 141, 145, 148
Offset: 1
References
- McMullen, Curtis. "Billiards and Teichmüller curves." Bulletin of the American Mathematical Society, 60:2 (2023), 195-250. See Table C.1.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, p. 112.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000 (terms n = 1..2001 from Vincenzo Librandi).
- S. R. Finch, Class number theory
- Steven R. Finch, Class number theory [Cached copy, with permission of the author]
Programs
-
Mathematica
Select[ Range[148], (Mod[ #, 4] == 0 || Mod[ #, 4] == 1) && !IntegerQ[ Sqrt[ # ]] & ]
-
PARI
seq(N) = { my(n = 1, v = vector(N), top = 0); while (top < N, if (n%4 < 2 && !issquare(n), v[top++] = n); n++;); return(v); }; seq(62) \\ Gheorghe Coserea, Nov 07 2016
Formula
a(2*k^2 + 2*k + 1) = 4*(k+1)^2 + 1 for k >= 0. - Gheorghe Coserea, Nov 07 2016
a(2*k^2 + 4*k + 2 + (k+1)*(-1)^k) = (2*k + 3)*(2*k + 3 + (-1)^k) for k >= 0. - Bruno Berselli, Nov 10 2016
Extensions
More terms from Robert G. Wilson v, Mar 26 2003
Offset changed to 1 (since this is a list). - N. J. A. Sloane, Mar 14 2023
Comments