A079908 Solution to the Dancing School Problem with 3 girls and n+3 boys: f(3,n).
1, 4, 14, 36, 76, 140, 234, 364, 536, 756, 1030, 1364, 1764, 2236, 2786, 3420, 4144, 4964, 5886, 6916, 8060, 9324, 10714, 12236, 13896, 15700, 17654, 19764, 22036, 24476, 27090, 29884, 32864, 36036, 39406, 42980, 46764, 50764, 54986, 59436
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Lute Kamstra, Problem 29 in Vol. 5/3, No. 1, Mar 2002, p. 96. See also Vol. 5/3, Nos. 3 and 4.
- Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
- Jaap Spies, Dancing School Problems, Permanent solutions of Problem 29.
- Jaap Spies, Sage program to compute f(g,h).
- Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
Join[{1},Array[#^3+3*#&,5!,1]] (* Vladimir Joseph Stephan Orlovsky, Jan 08 2011 *)
-
PARI
concat(1,vector(30,n,n^3+3*n)) \\ Derek Orr, Jun 18 2015
Formula
a(n) = max(1, n^3 + 3*n), found by elementary counting.
G.f.: 1+2*x*(2-x+2*x^2)/(1-x)^4. - R. J. Mathar, Nov 19 2007
Comments