cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079936 Greedy frac multiples of sqrt(5): a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=sqrt(5).

Original entry on oeis.org

1, 2, 5, 13, 17, 34, 305, 610, 1597, 4181, 5473, 10946, 98209, 196418, 514229, 1346269, 1762289, 3524578, 31622993, 63245986, 165580141, 433494437, 567451585, 1134903170, 10182505537, 20365011074, 53316291173, 139583862445
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Jan 21 2003

Keywords

Comments

The n-th greedy frac multiple of x is the smallest integer that does not cause sum(k=1..n,frac(a(k)*x)) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x.

Examples

			a(4) = 13 since frac(1x) + frac(2x) + frac(5x) + frac(13x) < 1, while frac(1x) + frac(2x) + frac(5x) + frac(k*x) > 1 for all k>5 and k<13.
		

Crossrefs

Cf. A001076 (denominators of convergents to sqrt(5)), A079934, A079935, A079937.

Formula

For n>=0, a(6n+1)=A001076(4n+1); a(6n+2)=2a(6n+1); a(6n+3)=A001076(4n+1)+A001076(4n+2); a(6n+4)=A001076(4n+3)-A001076(4n+2); a(6n+5)=A001076(4n+3); a(6n+6)=2a(6n+5). Asymptotics: a(6n) -> 2*sqrt(5)*(tau)^(12n-3); a(6n+2)/a(6n+1) -> (tau)^2; a(6n+3)/a(6n+2) -> (tau)^2; a(6n+4)/a(6n+3) -> (tau)^2/2; a(6n+6)/a(6n+5) -> (tau)^6/2; where tau = (1+sqrt(5))/2.
G.f.: -x*(x -1)*(2*x^10 +3*x^9 +8*x^8 +21*x^7 +55*x^6 +72*x^5 +38*x^4 +21*x^3 +8*x^2 +3*x +1) / (x^12 -322*x^6 +1). - Colin Barker, Jun 16 2013