A079938 Greedy frac multiples of Pi: a(1)=1, Sum_{n>=1} frac(a(n)*Pi) = 1.
1, 2, 3, 8, 99, 33102, 66317, 265381, 1360120, 25510582, 78256779, 156513558, 209259755, 340262731, 1963319607, 6701487259, 8664806866, 13402974518, 20104461777, 26805949036, 33507436295, 40208923554, 46910410813
Offset: 1
Examples
a(4) = 8 since frac(1x*) + frac(2*x) + frac(3*x) + frac(8*x) < 1, while frac(1*x) + frac(2*x) + frac(3*x) + frac(k*x) > 1 for all k > 3 and k < 8.
Programs
-
Maple
Digits := 100: a := []: s := 0: x := Pi: for n from 1 to 10000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
-
PARI
first(n)=my(v=vector(n),s=1.,p=Pi-3,k); for(m=1,oo, my(t=frac(p*m)); if(t
Charles R Greathouse IV, Jul 25 2024
Extensions
a(9) from Mark Hudson, Jan 30 2003
a(10)-a(23) from Charles R Greathouse IV, Jul 26 2024
Comments