cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079955 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={0,2,3}.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11, 15, 19, 26, 34, 46, 60, 80, 105, 140, 185, 246, 325, 431, 570, 756, 1001, 1327, 1757, 2328, 3083, 4085, 5411, 7169, 9496, 12580, 16664, 22076, 29244, 38741, 51320, 67985, 90060, 119305, 158045, 209366, 277350, 367411
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {2,5,6}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x^2-x^5-x^6) )); // G. C. Greubel, Dec 11 2019
    
  • Maple
    seq(coeff(series(1/(1-x^2-x^5-x^6), x, n+1), x, n), n = 0..50); # G. C. Greubel, Dec 11 2019
  • Mathematica
    LinearRecurrence[{0, 1, 0, 0, 1, 1}, {1, 0, 1, 0, 1, 1}, 51] (* Jean-François Alcover, Dec 11 2019 *)
  • PARI
    a(n) = ([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,0,0,1,0]^n*[1;0;1;0;1;1])[1,1] \\ Charles R Greathouse IV, Jul 28 2015
    
  • Sage
    def A079955_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x^2-x^5-x^6) ).list()
    A079955_list(50) # G. C. Greubel, Dec 11 2019

Formula

a(n) = a(n-2) + a(n-5) + a(n-6).
G.f.: 1/(1 - x^2 - x^5 - x^6).