cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079972 Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=4, I={1,2}.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 6, 8, 11, 17, 27, 41, 60, 88, 132, 200, 301, 449, 669, 1001, 1502, 2252, 3370, 5040, 7543, 11297, 16919, 25329, 37912, 56752, 84968, 127216, 190457, 285121, 426841, 639025, 956698, 1432276, 2144238, 3210104, 4805827, 7194801
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,4,5}.
a(n+3) is the number of length-n binary words with no substring 1x1 of 1xy1 (that is, no 1's occur with distance two or three), see fxtbook link. - Joerg Arndt, May 27 2011

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x - x^4 - x^5), {x, 0, 41}], x] (* Michael De Vlieger, Feb 03 2020 *)
  • Maxima
    a(n):=sum(sum(binomial(k,j)*binomial(j,n-k-3*j),j,floor((n-k)/4),floor((n-k)/3)),k,0,n); /* Vladimir Kruchinin, May 26 2011 */

Formula

a(n) = a(n-1) + a(n-4) + a(n-5).
G.f.: 1/(1-x-x^4-x^5).
a(n) = Sum_{k=0..n} Sum_{j=floor((n-k)/4)..floor((n-k)/3)} binomial(k,j)*binomial(j,n-k-3*j). - Vladimir Kruchinin, May 26 2011