cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185265 a(0)=1, a(1)=2; thereafter a(n) = f(n-1) + f(n-2) where f() = A164387().

Original entry on oeis.org

1, 2, 3, 6, 12, 22, 39, 70, 127, 231, 419, 759, 1375, 2492, 4517, 8187, 14838, 26892, 48739, 88335, 160099, 290164, 525894, 953132, 1727460, 3130855, 5674373, 10284254, 18639219, 33781788, 61226235, 110966650, 201116358, 364504015, 660628396, 1197325296, 2170036700, 3932982369, 7128151480
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2011

Keywords

Comments

Arises in studying lunar arithmetic.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x + 1)*(x^4 + x^3 + 1)/(x^5 + x^4 + x^2 + x - 1), {x, 0, 50}], x] (* G. C. Greubel, Jun 25 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(x+1)*(x^4+x^3+1)/(x^5+x^4+x^2+x-1)) \\ G. C. Greubel, Jun 25 2017

Formula

Satisfies the same recurrence as A164387 and A079976, although with different initial conditions.
From Colin Barker, Jul 25 2013: (Start)
a(n) = a(n-1) + a(n-2) + a(n-4) + a(n-5) for n>5.
G.f.: -(x+1)*(x^4+x^3+1) / (x^5+x^4+x^2+x-1). (End)

A189101 Expansion of g.f. 1/(1-(x+x^2+x^3+x^4+x^6+x^7)).

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 30, 59, 115, 225, 441, 863, 1689, 3307, 6474, 12673, 24809, 48567, 95075, 186120, 364352, 713261, 1396290, 2733399, 5350944, 10475089, 20506194, 40143239, 78585017, 153839228, 301158021, 589551538, 1154115087, 2259313307, 4422866209
Offset: 0

Views

Author

N. J. A. Sloane, Apr 19 2011

Keywords

Comments

Compositions of n into parts !=5 and <=7. - Joerg Arndt, Jun 06 2011

Crossrefs

This sequence is the next in the series after A000931, A006498, A079976, A079968.

Programs

  • Maxima
    makelist(coeff(taylor(1/(1-(x+x^2+x^3+x^4+x^6+x^7)), x, 0, n), x, n), n, 0, 34);  /* Bruno Berselli, Jun 05 2011 */
    
  • PARI
    Vec(1/(1-(x+x^2+x^3+x^4+x^6+x^7))+O(x^99)) \\ Charles R Greathouse IV, Feb 26 2014
Showing 1-2 of 2 results.