A079986 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,0,2}.
1, 0, 1, 0, 4, 0, 16, 0, 49, 0, 169, 0, 576, 0, 1936, 0, 6561, 0, 22201, 0, 75076, 0, 254016, 0, 859329, 0, 2907025, 0, 9834496, 0, 33269824, 0, 112550881, 0, 380757169, 0, 1288092100, 0, 4357584144, 0, 14741602225
Offset: 0
Keywords
References
- D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
Links
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135
- Index entries for linear recurrences with constant coefficients, signature (0, 2, 0, 3, 0, 6, 0, -1, 0, 0, 0, -1).
Programs
-
Mathematica
LinearRecurrence[{0,2,0,3,0,6,0,-1,0,0,0,-1},{1,0,1,0,4,0,16,0,49,0,169,0},50] (* Harvey P. Dale, Nov 03 2015 *)
Formula
a(n) = 2*a(n-2)+3*a(n-4)+6*a(n-6)-a(n-8)-a(n-12).
G.f.: -(x^6+x^4+x^2-1)/(x^12+x^8-6*x^6-3*x^4-2*x^2+1)
Comments