A080037 a(0)=2; for n > 0, a(n) = n + floor(sqrt(4n-3)) + 2.
2, 4, 6, 8, 9, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 92
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
Programs
-
Maple
f:= n -> n + floor(sqrt(4*n-3)) + 2: f(0):= 2: map(f, [$0..100]); # Robert Israel, Jul 27 2023
-
Mathematica
Join[{2},Table[n+Floor[Sqrt[4n-3]]+2,{n,100}]] (* Harvey P. Dale, Jul 22 2025 *)
-
Python
from math import isqrt def A080037(n): return n+2+isqrt((n<<2)-1) if n else 2 # Chai Wah Wu, Jul 27 2022
Formula
G.f.: (2-z)/(1-z)^2 + Sum_{k >= 1} z^(k^2+1)/(1-z) + Sum_{k >= 0} z^(k^2+k+1)/(1-z) = 1/2 + 1/(z-1)^2 - 1/(2*(z-1)) + z^(3/4)*JacobiTheta2(0,z)/(2*(1-z)) + z*JacobiTheta3(0,z)/(2*(1-z)). - Robert Israel, Jul 27 2023
Comments