cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A033638 Quarter-squares plus 1 (that is, a(n) = A002620(n) + 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65, 73, 82, 91, 101, 111, 122, 133, 145, 157, 170, 183, 197, 211, 226, 241, 257, 273, 290, 307, 325, 343, 362, 381, 401, 421, 442, 463, 485, 507, 530, 553, 577, 601, 626, 651, 677, 703, 730, 757, 785, 813, 842
Offset: 0

Views

Author

Tanya Y. Berger-Wolf (tanyabw(AT)uiuc.edu)

Keywords

Comments

Fill an infinity X infinity matrix with numbers so that 1..n^2 appear in the top left n X n corner for all n; write down the minimal elements in the rows and columns and sort into increasing order; maximize this list in the lexicographic order.
From Donald S. McDonald, Jan 09 2003: (Start)
Numbers of the form n^2 + 1 or n^2 + n + 1.
Locations of right angle turns in Ulam square spiral. (End)
a(n-1) (for n >= 1) is also the number u of unique Fibonacci/Lucas type sequences generated (the total number t of these sequences being a triangular number). Sum(n+1)=t. Then u=Sum((n+1/2) minus 0.5 for odd terms) except for the initial term. E.g., u=13: (n=6)+1 = 7; then 7/2 - 0.5 =3. So u = Sum(1, 1, 1, 2, 2, 3, 3) = 13. - Marco Matosic, Mar 11 2003
Number of (3412,123)-avoiding involutions in S_n.
Schur's Theorem (1905): the maximum number of mutually commuting linearly independent complex matrices of order n is floor((n^2)/4) + 1. - Jonathan Vos Post, Apr 03 2007
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 2, A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=(-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 24 2010
Except for the initial two terms, A033638 gives iterates of the nonsquare function: c(n) = f(c(n-1)), where f(n) = A000037(n) = n + floor(1/2 + sqrt(n)) = n-th nonsquare, starting with c(1)=2. - Clark Kimberling, Dec 28 2010
For n >= 1: for all permutations of [0..n-1]: number of distinct values taken by Sum_{k=0..n-1} (k mod 2) * pi(k). - Joerg Arndt, Apr 22 2011
First differences are A110654. - Jon Perry, Sep 12 2012
Number of (weakly) unimodal compositions of n with maximal part <= 2, see example. - Joerg Arndt, May 10 2013
Construct an infinite triangular matrix with 1's in the leftmost column and the natural numbers in all other columns but shifted down twice. Square the triangle and the sequence is the leftmost column vector. - Gary W. Adamson, Jan 27 2014
Equals the sum of terms in upward sloping diagonals of an infinite lower triangle with 1's in the leftmost column and the natural numbers in all other columns. - Gary W. Adamson, Jan 29 2014
a(n) is the number of permutations of length n avoiding both 213 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Number of partitions of n with no more than 2 parts > 1. - Wouter Meeussen, Feb 22 2015, revised Apr 24 2023
Number of possible values for the area of a polyomino whose perimeter is 2n + 4. - Luc Rousseau, May 10 2018
a(n) is the number of 231-avoiding even Grassmannian permutations of size n+1. - Juan B. Gil, Mar 10 2023
For n > 0, a(n) is the smallest number that requires n iterations of the map k -> k - floor(sqrt(k)) to reach 0. - Jon E. Schoenfield, Jun 24 2023
a(n) agrees with the lower matching number of the (n + 1) X (n + 1) black bishop graph from n = 1 up to at least n = 14. - Eric W. Weisstein, Dec 23 2024
For n > 0, obtain a positive integer a(n+1) recursively from a(n) by minimizing a(n+1) > a(n) so that each gap between a(k) and a(k+1) for 1 <= k <= n is used at most twice. - Gerold Jäger, Jun 04 2025
From Roger Ford, May 19 2025: (Start)
a(n) = the number of different total arch lengths for the top arches of semi-meanders with n+2 arches.
Example: Each arch length equals 1 + the number of covered arches.
For semi-meanders with 5 top arches there are 3 different values.
/\
//\\ /\ /\
///\\\ //\\ /\ / \
////\\\\ /\ ///\\\ //\\ //\/\\ /\ /\
Total arch lengths: 4+3+2+1 +1= 11 3+2+1 2+1= 9 3+1+1 +1 +1= 7, so a(3) = 3.
For semi-meanders with 6 top arches there are 5 values: 8, 10, 12, 14, 16, so a(4) = 5. (End)

Examples

			First 4 rows can be taken to be 1,2,5,10,17,...; 3,4,6,11,18,...; 7,8,9,12,19,...; 13,14,15,16,20,...
Ulam square spiral = 7 8 9 / 6 1 2 / 5 4 3 /...; changes of direction (right-angle) at 1 2 3 5 7 ...
From _Joerg Arndt_, May 10 2013: (Start)
The a(7)=13 unimodal compositions of 7 with maximal part <= 2 are
  01:  [ 1 1 1 1 1 1 1 ]
  02:  [ 1 1 1 1 1 2 ]
  03:  [ 1 1 1 1 2 1 ]
  04:  [ 1 1 1 2 1 1 ]
  05:  [ 1 1 1 2 2 ]
  06:  [ 1 1 2 1 1 1 ]
  07:  [ 1 1 2 2 1 ]
  08:  [ 1 2 1 1 1 1 ]
  09:  [ 1 2 2 1 1 ]
  10:  [ 1 2 2 2 ]
  11:  [ 2 1 1 1 1 1 ]
  12:  [ 2 2 1 1 1 ]
  13:  [ 2 2 2 1 ]
(End)
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 10*x^6 + 13*x^7 + 17*x^8 + ...
		

Crossrefs

Equals A002620 + 1.
Cf. A002878, A004652, A002984, A083479, A080037 (complement, except 2).
A002522 lists the even-indexed terms of this sequence.

Programs

  • Haskell
    a033638 = (+ 1) . (`div` 4) . (^ 2)  -- Reinhard Zumkeller, Apr 06 2012
    
  • Magma
    [n^2 div 4 + 1: n in [0.. 50]]; // Vincenzo Librandi, Jul 31 2016
    
  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=3)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m),m=6..62); # Zerinvary Lajos, Mar 09 2007
    A033638 := proc(n)
            1+floor(n^2/4) ;
    end proc: # R. J. Mathar, Jul 13 2012
  • Mathematica
    a[n_] := a[n] = 2*a[n - 1] - 2*a[n - 3] + a[n - 4]; a[0] = a[1] = 1; a[2] = 2; a[3] = 3; Array[a, 54, 0] (* Robert G. Wilson v, Mar 28 2011 *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 2, 3}, 60] (* Robert G. Wilson v, Sep 16 2012 *)
  • PARI
    {a(n) = n^2\4 + 1} /* Michael Somos, Apr 03 2007 */
    
  • Python
    def A033638(n): return (n**2>>2)+1 # Chai Wah Wu, Jul 27 2022

Formula

a(n) = ceiling((n^2+3)/4) = ( (7 + (-1)^n)/2 + n^2 )/4.
a(n) = A001055(prime^n), number of factorizations. - Reinhard Zumkeller, Dec 29 2001
G.f.: (1-x+x^3)/((1-x)^2*(1-x^2)); a(n) = a(n-1) + a(n-2) - a(n-3) + 1. - Jon Perry, Jul 07 2004
a(n) = a(n-2) + n - 1. - Paul Barry, Jul 14 2004
a(0) = 1; a(1) = 1; for n > 1 a(n) = a(n-1) + round(sqrt(a(n-1))). - Jonathan Vos Post, Jan 19 2006
a(n) = floor((n^2)/4) + 1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3. - Philippe Deléham, Nov 03 2008
a(0) = a(1) = 1, a(n) = a(n-1) + ceiling(sqrt(a(n-2))) for n > 1. - Jonathan Vos Post, Oct 08 2011
a(n) = floor(b(n)) with b(n) = b(n-1) + n/(1+e^(1/n)) and b(0)= 1. - Richard R. Forberg, Jun 08 2013
a(n) = a(n-1) + floor(n/2). - Michel Lagneau, Jul 11 2014
From Ilya Gutkovskiy, Oct 07 2016: (Start)
E.g.f.: (exp(-x) + (7 + 2*x + 2*x^2)*exp(x))/8.
a(n) = Sum_{k=0..n} A123108(k).
Convolution of A008619 and A179184. (End)
a(n) = (n^2 - n + 4)/2 - a(n-1) for n >= 1. - Kritsada Moomuang, Aug 03 2019

A000267 Integer part of square root of 4n+1.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17
Offset: 0

Views

Author

Keywords

Comments

1^1, 2^1, 3^2, 4^2, 5^3, 6^3, 7^4, 8^4, 9^5, 10^5, ...
Start with n, repeatedly subtract the square root of the previous term; a(n) gives number of steps to reach 0. - Robert G. Wilson v, Jul 22 2002
Triangle A094727 read by diagonals. - Philippe Deléham, Mar 21 2014
Partial sums of A240025; a(n) = number of quarter squares <= n. - Reinhard Zumkeller, Jul 05 2014
Every number k is present consecutively (floor((2*k+3)/4)) times. - Bernard Schott, Jun 08 2019

Examples

			From _Philippe Deléham_, Mar 21 2014: (Start)
Triangle A094727 begins:
  1;
  2,  3;
  3,  4,  5;
  4,  5,  6,  7;
  5,  6,  7,  8,  9;
  6,  7,  8,  9, 10, 11; ...
Read by diagonals:
   1;
   2;
   3,  3;
   4,  4;
   5,  5,  5;
   6,  6,  6;
   7,  7,  7,  7;
   8,  8,  8,  8;
   9,  9,  9,  9,  9;
  10, 10, 10, 10, 10; (End)
G.f. = 1 + 2*x + 3*x^2 + 3*x^3 + 4*x^4 + 4*x^5 + 5*x^6 + 5*x^7 + 5*x^8 + 6*x^9 + ...
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 20.
  • Bruce C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, 1994, see p. 77, Entry 23.

Crossrefs

Programs

  • Haskell
    a000267 = a000196 . a016813  -- Reinhard Zumkeller, Dec 13 2012
    
  • Magma
    [Floor(Sqrt(4*n+1)): n in [0..100]]; // Vincenzo Librandi, Jun 08 2019
    
  • Maple
    A000267:=seq(floor(sqrt(4*n+1)), n=0..100); // Bernard Schott, Jun 08 2019
  • Mathematica
    Table[Floor[Sqrt[4*n + 1]], {n, 0, 100}] (* T. D. Noe, Jun 19 2012 *)
  • PARI
    {a(n) = if( n<0, 0, sqrtint(4*n + 1))};
    
  • Python
    from math import isqrt
    def A000267(n): return isqrt((n<<2)|1) # Chai Wah Wu, Nov 23 2024

Formula

floor(a(n)/2) = A000196(n).
a(n) = 1 + a(n - floor(n^(1/2))), if n>0. - Michael Somos, Jul 22 2002
a(n) = floor( 1 / ( sqrt(n + 1) - sqrt(n) ) ). - Robert A. Stump (bob_ess107(AT)yahoo.com), Apr 07 2003
a(n) = |{floor(n/k): k in Z+}|. - David W. Wilson, May 26 2005
a(n) = ceiling(2*sqrt(n+1) - 1). - Mircea Merca, Feb 03 2012
a(n) = A000196(A016813(n)). - Reinhard Zumkeller, Dec 13 2012
a(n) = A070939(A227368(n+1)), conjectured. - Antti Karttunen, Dec 28 2013
a(n) = floor( sqrt(n) + sqrt(n+2) ). [Bruno Berselli, Jan 08 2015]
a(n) = floor( sqrt(4*n + k) ) where k = 1, 2, or 3. - Michael Somos, Mar 11 2015
G.f.: (Sum_{k>0} x^floor(k^2 / 4)) / (1 - x). - Michael Somos, Mar 11 2015
a(n) = 1 + A055086(n). - Michael Somos, Sep 02 2017
a(n) = floor(sqrt(n+1)+1/2) + floor(sqrt(n)). - Ridouane Oudra, Jun 07 2019
Sum_{k>=0} (-1)^k/a(k) = Pi/8 + log(2)/4. - Amiram Eldar, Jan 26 2024

Extensions

More terms from Michael Somos, Jun 13 2000

A080036 a(n) = n + round(sqrt(2*n)) + 1.

Original entry on oeis.org

1, 3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86
Offset: 0

Views

Author

N. J. A. Sloane, Mar 14 2003

Keywords

Comments

Sequence (without first term) is the complement of A000124 (central polygonal numbers). - Jaroslav Krizek, Jun 16 2009
a(n) is the Ramsey core number rc(2,n). The Ramsey core number rc(s,t) is the smallest n such that for all edge 2-colorings of K_n, either the factor induced by the first color contains an s-core or the second factor contains a t-core. (A k-core is a subgraph with minimum degree at least k.) - Allan Bickle, Mar 29 2023

Examples

			For order 5, one of the two factors has at least 5 edges, and so contains a cycle.   For order 4, K_4  decomposes into two paths.  Thus rc(2,2)=5.
		

References

  • R. Klein and J. Schönheim, Decomposition of K_{n} into degenerate graphs, In Combinatorics and Graph Theory Hefei 6-27, April 1992. World Scientific. Singapore, New Jersey, London, Hong Kong, 141-1

Crossrefs

Equals A014132 + 1. Cf. A080037.
Different from A105206.
Cf. A361261 (array of rc(s,t)), A361684 (rc(n,n)).

Programs

  • Magma
    [n + Round(Sqrt(2*n)) + 1: n in [0..80]]; // Vincenzo Librandi, Jan 20 2015
    
  • Mathematica
    Table[(n + Round[Sqrt[2 n]] + 1), {n, 0, 80}] (* Vincenzo Librandi, Jan 20 2015 *)
  • PARI
    A080036(n)=n+round(sqrt(2*n))+1 \\ M. F. Hasler, Jan 13 2015
    
  • Python
    from math import isqrt
    def A080036(n): return (k:=isqrt(m:=n<<1))+int((m<<2)>(k<<2)*(k+1)+1)+n+1 # Chai Wah Wu, Jul 26 2022

Formula

a(0)=1, a(1)=3; for n>1, a(n)=a(n-1)+1 if n is already in the sequence, a(n)=a(n-1)+2 otherwise.
a(n) = A003057(n+1) + n. - Jaroslav Krizek, Jun 16 2009
a(n) = ceiling(n + 1/2 + sqrt(2*(n-1)+9/4)). - Allan Bickle, Mar 29 2023

A080578 a(1)=1; for n > 1, a(n) = a(n-1) + 1 if n is already in the sequence, a(n) = a(n-1) + 3 otherwise.

Original entry on oeis.org

1, 4, 7, 8, 11, 14, 15, 16, 19, 22, 23, 26, 29, 30, 31, 32, 35, 38, 39, 42, 45, 46, 47, 50, 53, 54, 57, 60, 61, 62, 63, 64, 67, 70, 71, 74, 77, 78, 79, 82, 85, 86, 89, 92, 93, 94, 95, 98, 101, 102, 105, 108, 109, 110, 113, 116, 117, 120, 123, 124, 125, 126
Offset: 1

Views

Author

N. J. A. Sloane and Benoit Cloitre, Mar 23 2003

Keywords

Comments

More generally for fixed r, there is a nice connection between the sequence a(1)=1, a(n) = a(n-1) + 1 if n is in the sequence, a(n) = a(n-1) + r + 1 otherwise and the so-called metafibonacci sequences. Indeed, (a(n)-n)/r is a generalized metafibonacci sequence of order r as defined in Ruskey's recent paper (reference given at A046699). - Benoit Cloitre, Feb 04 2007
In the Fokkink-Joshi paper, this sequence is the Cloitre (0,1,1,3)-hiccup sequence. - Michael De Vlieger, Jul 29 2025

Crossrefs

Programs

  • Haskell
    a080578 n = a080578_list !! (n-1)
    a080578_list = 1 : f 2 [1] where
       f x zs@(z:_) = y : f (x + 1) (y : zs) where
         y = if x `elem` zs then z + 1 else z + 3
    -- Reinhard Zumkeller, Sep 26 2014
    
  • Mathematica
    l={1}; a=1; For[n=2, n<=100, If[MemberQ[l, n], a=a+1, a=a+3]; AppendTo[l, a]; n++]; l (* Indranil Ghosh, Apr 07 2017 *)
  • PARI
    a(n)=if(n<2,1,a(n+1-2^floor(log(n)/log(2)))+2*2^floor(log(n)/log(2))-1) \\ Benoit Cloitre, Feb 04 2007
    
  • Python
    l=[1]
    a=1
    for n in range(2, 101):
        a += 3 if n not in l else 1
        l.append(a)
    print(l) # Indranil Ghosh, Apr 07 2017

Formula

a(n) = 2n + O(1); a(2^n) = 2^(n+1). - Benoit Cloitre, Oct 12 2003
a(1) = 1, for n >= 2 a(n) = a(n + 1 - 2^floor(log(n)/log(2))) + 2*2^floor(log(n)/log(2)) - 1; (a(n) - n)/2 = A046699(n) for n >= 2. - Benoit Cloitre, Feb 04 2007
a(n) = A055938(n-1) + 2 (conjectured). - Ralf Stephan, Dec 27 2013

A080458 a(1)=4; for n>1, a(n)=a(n-1) if n is already in the sequence, a(n)=a(n-1)+4 otherwise.

Original entry on oeis.org

4, 8, 12, 12, 16, 20, 24, 24, 28, 32, 36, 36, 40, 44, 48, 48, 52, 56, 60, 60, 64, 68, 72, 72, 76, 80, 84, 84, 88, 92, 96, 96, 100, 104, 108, 108, 112, 116, 120, 120, 124, 128, 132, 132, 136, 140, 144, 144, 148, 152, 156, 156, 160, 164, 168, 168, 172, 176
Offset: 1

Views

Author

N. J. A. Sloane and Benoit Cloitre, Mar 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 1, -1}, {4, 8, 12, 12, 16}, 60] (* Jean-François Alcover, Sep 20 2018 *)
  • PARI
    a(n) = 4 + 4*(n-2-(n-4)\4); \\ Michel Marcus, May 06 2016

Formula

a(n) = 4 + 4*(n-2-floor((n-4)/4)).
From Chai Wah Wu, Jul 17 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: 4*x*(x^2 + x + 1)/(x^5 - x^4 - x + 1). (End)
From Ilya Gutkovskiy, Jul 17 2016: (Start)
E.g.f.: (3*x + 1)*cosh(x) + (3*x + 2)*sinh(x) - cos(x) - sin(x).
a(n) = (6*n - (-1)^n - 2*sqrt(2)*sin(Pi*n/2+Pi/4) + 3)/2. (End)

A080455 a(1)=1; for n>1, a(n) = a(n-1) if n is already in the sequence, a(n) = a(n-1) + 4 otherwise.

Original entry on oeis.org

1, 5, 9, 13, 13, 17, 21, 25, 25, 29, 33, 37, 37, 41, 45, 49, 49, 53, 57, 61, 61, 65, 69, 73, 73, 77, 81, 85, 85, 89, 93, 97, 97, 101, 105, 109, 109, 113, 117, 121, 121, 125, 129, 133, 133, 137, 141, 145, 145, 149, 153, 157, 157, 161, 165, 169, 169, 173
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 5, 9, 13, 13}, 58] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    Vec(-x*(x^4-4*x^3-4*x^2-4*x-1)/((x-1)^2*(x+1)*(x^2+1)) + O(x^100)) \\ Colin Barker, Oct 16 2013

Formula

For m>=1, a(4m) = a(4m+1) = 12m+1, a(4m+2) = 12m+5, a(4m+3) = 12m+9.
Or, shorter: a(n) = 4*n+1- 4*floor((n+3)/4). - Benoit Cloitre, Mar 20 2003
From Colin Barker, Oct 16 2013: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5).
G.f.: -x*(x^4 - 4*x^3 - 4*x^2 - 4*x - 1) / ((x-1)^2*(x+1)*(x^2+1)). (End)

A080652 a(1)=2; for n>1, a(n)=a(n-1)+3 if n is already in the sequence, a(n)=a(n-1)+2 otherwise.

Original entry on oeis.org

2, 5, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, 31, 34, 36, 38, 41, 43, 46, 48, 50, 53, 55, 58, 60, 63, 65, 67, 70, 72, 75, 77, 79, 82, 84, 87, 89, 92, 94, 96, 99, 101, 104, 106, 108, 111, 113, 116, 118, 121, 123, 125, 128, 130, 133, 135, 137, 140, 142, 145
Offset: 1

Views

Author

N. J. A. Sloane, Mar 23 2003

Keywords

Comments

In the Fokkink-Joshi paper, this sequence is the Cloitre (0,2,3,2)-hiccup sequence. - Michael De Vlieger, Jul 29 2025

Crossrefs

Cf. A080455-A080458, A080036, A080037. Apart from start, equals A064437 - 1.

Programs

  • Magma
    [Floor(n*(1+Sqrt(2)) + 1/(1+(1+Sqrt(2)))): n in [1..60]]; // Vincenzo Librandi, Oct 02 2018
  • Mathematica
    a[1] = 2;
    a[n_] := a[n] = If[MemberQ[Array[a, n-1], n], a[n-1] + 3, a[n-1] + 2];
    Array[a, 60] (* Jean-François Alcover, Oct 01 2018 *)
    Table[Floor[n (1 + Sqrt[2]) + 1 / (1 + (1 + Sqrt[2]))], {n, 60}] (* Vincenzo Librandi, Oct 02 2018 *)
  • PARI
    a(n) = my(r=sqrt(2)+1); (r*(r+1)*n+1)\(r+1); \\ Altug Alkan, Oct 01 2018
    

Formula

a(n) = floor(n*r + 1/(1+r)) where r = 1+sqrt(2).

A049068 Complement of quarter-squares (A002620).

Original entry on oeis.org

3, 5, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Michael Somos, Aug 06 1999

Keywords

Comments

Intersection of A000037 and A078358. - Reinhard Zumkeller, May 08 2012
Numbers k such that floor(sqrt(k)+1/2) does not divide k. - Wesley Ivan Hurt, Dec 01 2020

Crossrefs

Programs

  • Haskell
    a049068 n = a049068_list !! (n-1)
    a049068 = filter ((== 0) . a240025) [0..]
    -- Reinhard Zumkeller, Jul 05 2014, Mar 18 2014, May 08 2012
    
  • Magma
    [n+Ceiling(2*Sqrt(n)): n in [1..70]]; // Vincenzo Librandi, Dec 09 2015
    
  • Maple
    A049068:=n->n + ceil(2*sqrt(n)); seq(A049068(n), n=1..100); # Wesley Ivan Hurt, Mar 01 2014
  • Mathematica
    max = 100; Complement[Range[0, max], Table[Quotient[n^2, 4], {n, 0, 2*Sqrt[max]}]]  (* Jean-François Alcover, Apr 18 2013 *)
    Table[n + Ceiling[2 * Sqrt[n]], {n, 100}] (* Wesley Ivan Hurt, Mar 01 2014 *)
    Select[Range[100],Mod[#,Floor[Sqrt[#]+1/2]]!=0&] (* Harvey P. Dale, May 27 2025 *)
  • PARI
    {a(n) = if( n<1, 0, n+1 + sqrtint(4*n - 3))} /* Michael Somos, Oct 16 2006 */
    
  • Python
    from math import isqrt
    def A049068(n): return n+1+isqrt((n<<2)-1) # Chai Wah Wu, Jul 27 2022

Formula

a(n) = n + A027434(n).
Other identities and observations. For all n >= 1:
A237347(a(n)) = 2. - Reinhard Zumkeller, Mar 18 2014
A240025(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2014
a(n) = A080037(n) - 1. - Peter Kagey, Dec 08 2015
G.f.: x/(1-x)^2 + Sum_{k>=0} (x^(1+k^2)*(1+x^k))/(1-x)
= (x*Theta3(x)+ x^(3/4)*Theta2(x))/(2-2*x) + (3-x)*x/(2*(1-x)^2) where Theta3 and Theta2 are Jacobi Theta functions. - Robert Israel, Dec 09 2015
a(n) = A000037(A000037(n)). - Gerald Hillier, Dec 01 2017

A083479 The natural numbers with all terms of A033638 inserted.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 56, 57, 57
Offset: 0

Views

Author

Alford Arnold, Jun 08 2003

Keywords

Comments

Row n of A049597 has a(n+1) nonzero values.
When considering the set of nested parabolas defined by -(x^2) + p*x for integer values of p, a(n) tells us how many parabolas are intersected by the line from (1,n) to (n,n). - Gregory R. Bryant, Apr 01 2013
Number of distinct perimeters for polyominoes with n square cells. - Wesley Prosser, Sep 06 2017

Examples

			There are three 1's, one from the natural numbers and two from A033638.
When viewed as an array the sequence begins:
   0
   1
   1  1
   2  2
   3  3  4
   5  5  6
   7  7  8  9
  10 10 11 12
  13 13 14 15 16
  17 17 18 19 20
  21 21 22 23 24 25
  26 26 27 28 29 30
  ...
		

Crossrefs

Programs

  • Haskell
    a083479 n = a083479_list !! n
    a083479_list = m [0..] a033638_list where
       m xs'@(x:xs) ys'@(y:ys) | x <= y    = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Magma
    [n eq 0 select 0 else (n+2)-Ceiling(Sqrt(4*n)): n in [0..100]]; // G. C. Greubel, Feb 17 2024
    
  • Mathematica
    Table[(n + 2) - Ceiling@ Sqrt[4 n] - 2 Boole[n == 0], {n, 0, 73}] (* Michael De Vlieger, Sep 05 2017 *)
  • Maxima
    a(n):=((n+2)-ceiling(sqrt(4*n))); /* Gregory R. Bryant, Apr 01 2013 */
    
  • Python
    from math import isqrt
    def A083479(n): return n+1-isqrt((n<<2)-1) if n else 0 # Chai Wah Wu, Jul 28 2022
    
  • SageMath
    [(n+2)-ceil(sqrt(4*n)) -2*int(n==0) for n in range(101)] # G. C. Greubel, Feb 17 2024

Formula

a(n) = (n+2) - ceiling(sqrt(4*n)), for n > 0. - Gregory R. Bryant, Apr 01 2013
From Wesley Prosser, Sep 06 2017: (Start)
a(n) = (n+2) - A027709(n)/2.
a(n) = (n+2) - A027434(n).
a(n) = (2n+2) - A049068(n).
a(n) = (2n+3) - A080037(n).
(End)

Extensions

Edited and extended by David Wasserman, Nov 16 2004

A080456 a(1) = a(2) = 2; for n > 2, a(n) = a(n-1) if n is already in the sequence, a(n) = a(n-1) + 4 otherwise.

Original entry on oeis.org

2, 2, 6, 10, 14, 18, 18, 22, 26, 30, 30, 34, 38, 42, 42, 46, 50, 54, 54, 58, 62, 66, 66, 70, 74, 78, 78, 82, 86, 90, 90, 94, 98, 102, 102, 106, 110, 114, 114, 118, 122, 126, 126, 130, 134, 138, 138, 142, 146, 150, 150, 154, 158, 162, 162, 166, 170, 174, 174
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2003

Keywords

Comments

First differences are 4-periodic.

Crossrefs

Programs

  • Mathematica
    Join[{2}, LinearRecurrence[{1, 0, 0, 1, -1}, {6, 10, 14, 18, 18}, 60]] (* Jean-François Alcover, Sep 02 2018 *)
    CoefficientList[Series[-2*(-1 - 2 x^2 - 2 x^3 - x^4 - 2 x^5 + 2 x^6)/((-1 + x)^2 (1 + x +x^2 + x^3)), {x, 0, 60}],x] (* Stefano Spezia, Sep 02 2018 *)

Formula

From Chai Wah Wu, Jul 17 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 6.
G.f.: -2*(-1 - 2*x^2 - 2*x^3 - x^4 - 2*x^5 + 2*x^6)/((-1 + x)^2*(1 + x + x^2 + x^3)). (End)

Extensions

a(1) = 2 prepended by Stefano Spezia, Sep 04 2018
Showing 1-10 of 20 results. Next