cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080047 Operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times l has to be repeatedly decreased in step L3.

Original entry on oeis.org

0, 1, 7, 41, 256, 1807, 14477, 130321, 1303246, 14335751, 172029067, 2236377937, 31309291196, 469639368031, 7514229888601, 127741908106337, 2299354345914202, 43687732572369991, 873754651447399991
Offset: 2

Views

Author

Hugo Pfoertner, Jan 25 2003

Keywords

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.

Crossrefs

Programs

  • Mathematica
    Transpose[NestList[{First[#]+1,(First[#]+1)Last[#]+(First[#](First[#]-1))/2}&, {2,0},20]][[2]] (* Harvey P. Dale, Feb 27 2012 *)
    Rest[Rest[CoefficientList[Series[(2-Exp[x]*(x^2-2*x+2))/(2*(x-1)),{x,0,20}],x]*Range[0,20]!]] (* Vaclav Kotesovec, Oct 21 2012 *)

Formula

a(2)=0, a(n) = n*a(n-1)+(n-1)*(n-2)/2 for n>=3 c = limit n--> infinity a(n)/n! = 0.35914091422952261768 = e/2-1, a(n) = floor [c*n! - (n-1)/2] for n>=2
E.g.f.: (2-exp(x)*(x^2-2*x+2))/(2*(x-1)). - Vaclav Kotesovec, Oct 21 2012