A080061 Triangle of coefficients of polynomials P(n; x) = Permanent(M), where M=[m(i,j)] is n X n matrix defined by m(i,j)=x if 0<=i-j<=2 else m(i,j)=1.
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 1, 4, 8, 10, 1, 5, 21, 38, 34, 21, 1, 33, 122, 209, 206, 109, 40, 1, 236, 849, 1400, 1351, 836, 295, 72, 1, 1918, 6719, 10849, 10543, 6629, 2821, 715, 125, 1, 17440, 59873, 95516, 92708, 60284, 26870, 8372, 1604, 212, 1, 175649, 593686
Offset: 0
Examples
1; 0,1; 0,1,1; 0,1,4,1; 1,4,8,10,1; 5,21,38,34,21,1; ... P(5; x) = Permanent(Matrix(5, 5, [[x,1,1,1,1],[x,x,1,1,1],[x,x,x,1,1],[1,x,x,x,1],[1,1,x,x,x]]))= 5+21*x+38*x^2+34*x^3+21*x^4+x^5.
References
- J. Riordan, The enumeration of permutations with three-ply staircase restrictions, unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963. See Table 1. - N. J. A. Sloane, Aug 27 2013 (See A001883)
Links
- R. J. Mathar, Table of n, a(n) for n = 0..209
Crossrefs
Programs
-
Maple
A080061_line := proc(n) local M,r,c,p,pord ; if n = 0 then return [1] ; else M := Matrix(n,n) ; for r to n do for c to n do if r-c >=0 and r-c <=2 then M[r,c] := x ; else M[r,c] := 1 ; end if; end do: end do: p := LinearAlgebra[Permanent](M) ; pord := degree(p) ; [seq( coeff(p,x,r),r=0..pord)] ; end if; end proc: for n from 0 to 10 do print(A080061_line(n)) ; end do: # R. J. Mathar, Sep 18 2013
-
Mathematica
M[n_] := Table[If[0 <= i-j <= 2, x, 1], {i, 1, n}, {j, 1, n}]; M[0]={{1}}; Table[CoefficientList[Permanent[M[n]], x], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 06 2016 *)