cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A080065 Numbers n such that n == 3 modulo (spf(n)+1), where spf(m) is the smallest prime dividing m (A020639).

Original entry on oeis.org

3, 15, 27, 39, 51, 63, 75, 87, 91, 99, 111, 123, 135, 147, 159, 171, 183, 195, 203, 207, 219, 231, 243, 255, 259, 267, 279, 291, 303, 315, 327, 339, 351, 363, 371, 375, 387, 399, 411, 423, 427, 435, 447, 459, 471, 483, 495, 507, 519, 531, 539, 543, 555, 567
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 24 2003

Keywords

Comments

A080063(m) = 3 iff m = a(k) for some k.

Crossrefs

Cf. A080064.

Programs

  • Mathematica
    Select[Range[600],Mod[#,FactorInteger[#][[1,1]]+1]==3&] (* Harvey P. Dale, Aug 15 2013 *)

A080063 a(n) = n mod (spf(n)+1), where spf(n) is the smallest prime dividing n (A020639).

Original entry on oeis.org

1, 2, 3, 1, 5, 0, 7, 2, 1, 1, 11, 0, 13, 2, 3, 1, 17, 0, 19, 2, 1, 1, 23, 0, 1, 2, 3, 1, 29, 0, 31, 2, 1, 1, 5, 0, 37, 2, 3, 1, 41, 0, 43, 2, 1, 1, 47, 0, 1, 2, 3, 1, 53, 0, 1, 2, 1, 1, 59, 0, 61, 2, 3, 1, 5, 0, 67, 2, 1, 1, 71, 0, 73, 2, 3, 1, 5, 0, 79, 2, 1, 1, 83, 0, 1, 2, 3, 1, 89, 0, 3, 2, 1, 1, 5, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 24 2003

Keywords

Comments

a(n) = 0 iff n mod 6 = 0 (A008588);
a(n) = 2 iff n mod 6 = 2 (A016933);
for n>1: a(n)=n iff n is prime (A000040, A008578).

Crossrefs

Showing 1-2 of 2 results.