A080104
Le Corbusier's "modular" (or "modulor") numbers, based on the proportions of an ideal man.
Original entry on oeis.org
43, 53, 70, 86, 113, 140, 183, 226, 296
Offset: 0
Michael Barr, Mar 12 2003
- Shown on Swiss 10 Franc note, 2003. - Emre Telatar, Mar 14 2003
A139039
A triangular central symmetric sequence based on the sequence A003269: if m <= floor(n/2), t(n,m) = A003269(m+2), otherwise t(n,m) = A003269(n - (m+2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1
Offset: 1
{1},
{1, 1},
{1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1},
{1, 1, 1, 2, 1, 1, 1},
{1, 1, 1, 2, 2, 1, 1, 1},
{1, 1, 1, 2, 3, 2, 1, 1, 1},
{1, 1, 1, 2, 3, 3, 2, 1, 1, 1},
{1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1}
-
Clear[a]; a[ -2] = 0; a[ -1] = 1; a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1] + a[n - 4]; (* A003269 *) Table[If[m <= Floor[n/2],a[m],a[n-m] ] ,{n,0,10},{m,0,n}]
Non-ASCII characters removed and Mathematica code corrected by
Wouter Meeussen, Feb 10 2013
Showing 1-2 of 2 results.
Comments