cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081413 a(n) is the smallest prime p such that the largest prime divisor of the difference nextprime(p) - p equals the n-th prime, prime(n).

Original entry on oeis.org

3, 23, 139, 113, 1129, 2477, 1327, 30593, 81463, 44293, 34061, 404597, 265621, 155921, 1100977, 1098847, 1349533, 3117299, 6958667, 10343761, 6034247, 49269581, 83751121, 39389989, 166726367, 107534587, 232423823, 253878403, 327966101, 519653371, 1202442089, 1649328997
Offset: 1

Views

Author

Labos Elemer, Apr 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    t=Table[0, {100}]; ma[n_]:=FactorInteger[n][[-1,1]];Do[s=ma[Prime[n+1]-Prime[n]]; If[s<101&&t[[PrimePi[s]]]==0, t[[PrimePi[s]]]=Prime[n]], {n, 2, 170000000}]; t (* Typo fixed by Zak Seidov, Jul 06 2013 *)
  • PARI
    list(len) = {my(v = vector(len), prv = 3, c = 0, d, f, i); forprime(p = 5, , d = p - prv; f = factor(d); i = primepi(f[#f~, 1]); if(i < = len && v[i] == 0, c++; v[i] = prv; if(c == len, break)); prv = p); v;} \\ Amiram Eldar, Mar 11 2025

Formula

a(n) = min{ prime(j) : A006530(prime(j+1)-prime(j)) = prime(n) }.
For n > 1, a(n) = A080082(n). - Zak Seidov, Jul 05 2013

Extensions

Three more terms added from A080082 by Zak Seidov, Jul 05 2013
a(22) corrected and a(29)-a(32) added by Amiram Eldar, Mar 11 2025

A080083 Smallest prime p such that there is a gap of 2*prime(n) between p and previous prime.

Original entry on oeis.org

11, 29, 149, 127, 1151, 2503, 1361, 30631, 81509, 44351, 34123, 404671, 265703, 156007, 1101071, 1098953, 1349651, 3117421, 6958801, 10343903, 6034393, 49269739, 83751287, 39390167, 166726561, 107534789, 232424029, 253878617, 327966319, 519653597, 1202442343, 1649329259
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 26 2003

Keywords

Crossrefs

Programs

  • PARI
    list(len) = {my(v = vector(len), prv = 3, c = 0, d, i); forprime(p = 5, , d = (p - prv)/2; if(isprime(d), i = primepi(d); if(i < = len && v[i] == 0, c++; v[i] = p; if(c == len, break))); prv = p); v; } \\ Amiram Eldar, Mar 11 2025

Formula

A001632(A000040(n)) < a(n).
a(n) = A080082(n) + 2*A000040(n).

Extensions

a(17)-a(28) from Donovan Johnson, May 30 2010
a(29)-a(32) from Amiram Eldar, Mar 11 2025
Showing 1-2 of 2 results.