cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080143 a(n) = F(3)*F(n)*F(n+1) + F(4)*F(n+1)^2 - F(4) if n even, F(3)*F(n)*F(n+1) + F(4)*F(n+1)^2 if n odd, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

0, 5, 13, 39, 102, 272, 712, 1869, 4893, 12815, 33550, 87840, 229968, 602069, 1576237, 4126647, 10803702, 28284464, 74049688, 193864605, 507544125, 1328767775, 3478759198, 9107509824, 23843770272, 62423800997, 163427632717
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jan 30 2003

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> (2*F(n+2)*F(n+3) -3 -(-1)^n)/2); # G. C. Greubel, Jul 23 2019
  • Magma
    F:=Fibonacci; [(2*F(n+2)*F(n+3) -3 -(-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    CoefficientList[Series[x*(5+3*x-2*x^2)/((1-x^2)*(1-2*x-2*x^2+x^3)), {x, 0, 30}], x]
    With[{F=Fibonacci}, Table[(2*F[n+2]*F[n+3] -3 -(-1)^n)/2, {n,0,30}]] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(5+3*x-2*x^2)/((1-x^2)*(1- 2*x-2*x^2+x^3)))) \\ G. C. Greubel, Mar 05 2017
    
  • PARI
    vector(30, n, n--; f=fibonacci; (2*f(n+2)*f(n+3) -3 -(-1)^n)/2) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    f=fibonacci; [(2*f(n+2)*f(n+3) -3 -(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Jul 23 2019
    

Formula

G.f.: x*(5-2*x)/((1-x^2)*(1-3*x+x^2)), see a comment on A080144 for A(4,x). - Wolfdieter Lang, Jul 30 2012
a(n) = Sum_{i=0..n} ( A000045(i+4)*A000045(i) ). - Benoit Cloitre, Jun 14 2004
a(n) = (3*A027941(n) + 7*A001654(n))/2, n >= 0. Proof: from the preceding sum given by B. Cloitre via recurrence on the first factor under the sum. See also A080097 and A059840(n+2). - Wolfdieter Lang, Jul 27 2012
a(n) = (2*Lucas(2*n + 5) + 7*(-1)^(n+1) - 15)/10. - Ehren Metcalfe, Aug 21 2017
a(n) = (2*Fibonacci(n+2)*Fibonacci(n+3) - 3 - (-1)^n)/2. - G. C. Greubel, Jul 23 2019