cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A080151 Let m = Wonderful Demlo number A002477(n); a(n) = sum of digits of m.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 82, 85, 90, 97, 106, 117, 130, 145, 162, 163, 166, 171, 178, 187, 198, 211, 226, 243, 244, 247, 252, 259, 268, 279, 292, 307, 324, 325, 328, 333, 340, 349, 360, 373, 388, 405, 406, 409, 414, 421, 430, 441, 454, 469, 486, 487
Offset: 1

Views

Author

Eric W. Weisstein, Jan 31 2003

Keywords

Comments

Record values in A003132. - Reinhard Zumkeller, Jul 10 2011

Crossrefs

Programs

  • Haskell
    a n=(div n 9)*81+(mod n 9)^2
              A080151=map a [1..] \\ Chernin Nadav, Mar 06 2014
    
  • Maple
    f := n -> 9*n - 81*frac(1/9*n) + 81*frac(1/9*n)^2:
    map(f, [$1..100]); # Robert Israel, Aug 05 2019
  • Mathematica
    (* by direct counting *)
    Repunit[n_] := (-1 + 10^n)/9; A080151[n_]:=Plus @@ IntegerDigits[Repunit[n]^2];
    (* by the formula *)
    A080151[n_] := (9^2)*(n/9 - FractionalPart[n/9] + FractionalPart[n/9]^2)
    (* or alternatively *)
    A080151[n_] := 81*(Floor[n/9]+ FractionalPart[n/9]^2) (* Enrique Pérez Herrero, Nov 22 2009 *)
  • PARI
    vector(100, n, (n\9)*81+(n%9)^2) \\ Colin Barker, Mar 05 2014

Formula

a(n) = A007953(A002477(n)).
a(n) = sqrt( A080150(n) ).
a(n) = (9^2)*(n/9 - {n/9} + {n/9}^2) = 81*(floor(n/9) + {n/9}^2), where the symbol {n} means fractional part of n. - Enrique Pérez Herrero, Nov 22 2009
a(n) = A003132(A051885(n)). - Reinhard Zumkeller, Jul 10 2011
a(9*n + k) = 81*n + k^2, with k in range 0 to 9. - Enrique Pérez Herrero, Nov 05 2022
Empirical g.f.: x*(17*x^8 + 15*x^7 + 13*x^6 + 11*x^5 + 9*x^4 + 7*x^3 + 5*x^2 + 3*x + 1) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Mar 05 2014
Empirical g.f. confirmed. - Robert Israel, Aug 05 2019
Showing 1-1 of 1 results.