A080175 Fourth power of primes of the form 4k+1 (A002144).
625, 28561, 83521, 707281, 1874161, 2825761, 7890481, 13845841, 28398241, 62742241, 88529281, 104060401, 141158161, 163047361, 352275361, 492884401, 607573201, 895745041, 1073283121, 1387488001, 1506138481, 2750058481
Offset: 1
Examples
625 is the hypotenuse of triangles 175, 600, 625; 220, 585, 625; 336, 527, 625; 375, 500, 625.
References
- L. E. Dickson, History of the Theory of Numbers, Volume II, Diophantine Analysis. Carnegie Institution Publication No. 256, Vol II, Washington, DC, 1920, p. 227.
- Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972, pp. 275-276.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[a^4: n in [0..40] | IsPrime(a) where a is 4*n + 1 ]; // Vincenzo Librandi, Jun 24 2015
-
Maple
seq(p^4, p = select(isprime,[seq(4*k+1,k=1..100)])); # Robert Israel, Jan 14 2015
-
Mathematica
Select[4 Range[100] + 1, PrimeQ[#] &]^4 (* Vincenzo Librandi, Jun 24 2015 *)
-
PARI
fermat(n) = { for(x=1,n, y=4*x+1; if(isprime(y),print1(y^4, " ")) ) }
Formula
Product_{n>=1} (1 - 1/a(n)) = A334446. - Amiram Eldar, Dec 02 2022
Extensions
Edited: name shortened, part of old name as a comment, comment changed, Dickson reference, formula and cross references added. - Wolfdieter Lang, Jan 14 2015
Comments