A080176
Generalized Fermat numbers: 10^(2^n) + 1, n >= 0.
Original entry on oeis.org
11, 101, 10001, 100000001, 10000000000000001, 100000000000000000000000000000001, 10000000000000000000000000000000000000000000000000000000000000001
Offset: 0
a(0) = 10^1 + 1 = 11 = 9*(1) + 2 = 9*(empty product) + 2.
a(1) = 10^2 + 1 = 101 = 9*(11) + 2.
a(2) = 10^4 + 1 = 10001 = 9*(11*101) + 2.
a(3) = 10^8 + 1 = 100000001 = 9*(11*101*10001) + 2.
a(4) = 10^16 + 1 = 10000000000000001 = 9*(11*101*10001*100000001) + 2.
a(5) = 10^32 + 1 = 100000000000000000000000000000001 = 9*(11*101*10001*100000001*10000000000000001) + 2.
- Vincenzo Librandi, Table of n, a(n) for n = 0..9 (shortened by _N. J. A. Sloane_, Jan 13 2019)
- Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
- C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=10).
- Wilfrid Keller, GFN10 factoring status.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012
- Eric Weisstein's World of Mathematics, Generalized Fermat Number.
- OEIS Wiki, Generalized Fermat numbers.
Cf.
A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
A080109
Square of primes of the form 4k+1 (A002144).
Original entry on oeis.org
25, 169, 289, 841, 1369, 1681, 2809, 3721, 5329, 7921, 9409, 10201, 11881, 12769, 18769, 22201, 24649, 29929, 32761, 37249, 38809, 52441, 54289, 58081, 66049, 72361, 76729, 78961, 85849, 97969, 100489, 113569, 121801, 124609, 139129
Offset: 1
a(7) = 2809 is the hypotenuse of triangles 1241, 2520, 2809 and 1484, 2385, 2809, and only of these.
a(7) = 53^2 = 2809 = 45^2 + (4*7)^2, and this is the only way. - _Wolfdieter Lang_, Jan 13 2015
- L. E. Dickson, History of the Theory of Numbers, Volume II, Diophantine Analysis. Carnegie Institution Publ. No. 256, Vol II, Washington, DC, 1920, p. 227.
- Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972, pp. 275-276.
-
Select[4 Range[96] + 1, PrimeQ]^2 (* Michael De Vlieger, Dec 27 2016 *)
-
fermat(n) = { for(x=1,n, y=4*x+1; if(isprime(y),print1(y^2" ")) ) }
Edited: Name changed, part of old name as comment. Comments added and changed. Dickson reference added. -
Wolfdieter Lang, Jan 13 2015
A253802
a(n) gives the odd leg of one of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. This is the smaller of the two possible odd legs.
Original entry on oeis.org
7, 65, 161, 41, 1081, 369, 1241, 671, 721, 3471, 959, 9401, 4681, 1695, 3281, 7599, 10199, 24521, 3439, 18335, 37241, 45241, 24465, 29281, 64001, 18561, 31855, 27761, 76601, 7825
Offset: 1
n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = a(7)^2 + (4*A253803(7))^2 = 1241^2 + (4*630)^2.
The other Pythagorean triangle with hypotenuse 53^2 = 2809 has odd leg A253804(7) = 2385 and even leg 4*A253305(7) = 4*371 = 1484: 53^4 = 2385^2 + (4*371)^2.
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
A253803
a(n) gives one fourth of the even leg of one of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. The odd leg is given in A253802(n).
Original entry on oeis.org
6, 39, 60, 210, 210, 410, 630, 915, 1320, 1780, 2340, 990, 2730, 3164, 4620, 5215, 5610, 4290, 8145, 8106, 2730, 6630, 12116, 12540, 4080, 17485, 17451, 18480, 9690, 24414
Offset: 1
n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = A253802(7)^2 + (4*a(7))^2 = 1241^2 + (4*630)^2.
The other Pythagorean triangle with hypotenuse
53^2 = 2809 has odd leg A253804(7) = 2385 and even leg 4*A253305(7) = 4*371 = 1484: 53^4 = 2385^2 + (4*371)^2.
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
A253804
a(n) gives the odd leg of the second of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. This is the larger of the two possible odd legs.
Original entry on oeis.org
15, 119, 255, 609, 1295, 1519, 2385, 3479, 4015, 4879, 6305, 9999, 9919, 12319, 14385, 16999, 13345, 28545, 32039, 19199, 38415, 50609, 32239, 50369, 65535, 62839, 50279, 64911, 83505, 96719
Offset: 1
n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = a(7)^2 + (4*A253805(7))^2 = 2385^2 + (4*371)^2.
The other Pythagorean triangle with hypotenuse 53^2 = 2809 has odd leg A253802(7) = 1241 and even leg 4*A253303(7) = 4*630 = 2520: 53^4 = 1241^2 + (4*630)^2.
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
A253805
a(n) gives one fourth of the even leg of the second of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. The odd leg is given in A253804.
Original entry on oeis.org
5, 30, 34, 145, 111, 180, 371, 330, 876, 1560, 1746, 505, 1635, 840, 3014, 3570, 5181, 2249, 1710, 7980, 1379, 3435, 10920, 7230, 2056, 8970, 14490, 11240, 4981, 3900
Offset: 1
n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = A253804(7)^2 + (4*a(7))^2 = 2385^2 + (4*371)^2.
The other Pythagorean triangle with hypotenuse 53^2 = 2809 has odd leg A253802(7) = 1241 and even leg 4*A253303(7) = 4*630 = 2520: 53^4 = 1241^2 + (4*630)^2.
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
A080169
Numbers that are cubes of primes of the form 4k+1 (A002144).
Original entry on oeis.org
125, 2197, 4913, 24389, 50653, 68921, 148877, 226981, 389017, 704969, 912673, 1030301, 1295029, 1442897, 2571353, 3307949, 3869893, 5177717, 5929741, 7189057, 7645373, 12008989, 12649337, 13997521, 16974593, 19465109, 21253933
Offset: 1
a(2) = 2197 is the hypotenuse of the three triangles 825, 2035, 2197; 845, 2028, 2197; 1547, 1560, 2197.
a(2) = 9^2 + 46^2 = 39^2 + 26^2, and these are the only decompositions. - _Wolfdieter Lang_, Jan 15 2015
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
- Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972, pp. 275-276.
-
Select[Prime[Range[60]], Mod[#, 4] == 1 &]^3 (* Amiram Eldar, Dec 02 2022 *)
-
fermat(n) = { for(x=1,n, y=4*x+1; if(isprime(y),print1(y^3" ")) ) }
Edited: New name, part of old one now as a comment. Dickson reference, formula and cross references added. -
Wolfdieter Lang, Jan 15 2015
Showing 1-7 of 7 results.
Comments