A080176 Generalized Fermat numbers: 10^(2^n) + 1, n >= 0.
11, 101, 10001, 100000001, 10000000000000001, 100000000000000000000000000000001, 10000000000000000000000000000000000000000000000000000000000000001
Offset: 0
Examples
a(0) = 10^1 + 1 = 11 = 9*(1) + 2 = 9*(empty product) + 2. a(1) = 10^2 + 1 = 101 = 9*(11) + 2. a(2) = 10^4 + 1 = 10001 = 9*(11*101) + 2. a(3) = 10^8 + 1 = 100000001 = 9*(11*101*10001) + 2. a(4) = 10^16 + 1 = 10000000000000001 = 9*(11*101*10001*100000001) + 2. a(5) = 10^32 + 1 = 100000000000000000000000000000001 = 9*(11*101*10001*100000001*10000000000000001) + 2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..9 (shortened by _N. J. A. Sloane_, Jan 13 2019)
- Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
- C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=10).
- Wilfrid Keller, GFN10 factoring status.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012
- Eric Weisstein's World of Mathematics, Generalized Fermat Number.
- OEIS Wiki, Generalized Fermat numbers.
Crossrefs
Programs
-
Magma
[10^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
-
Mathematica
Table[10^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
Formula
a(0) = 11; a(n) = (a(n - 1) - 1)^2 + 1.
a(n) = 9*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 9*(empty product, i.e., 1)+ 2 = 11 = a(0). - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/9. - Amiram Eldar, Oct 03 2022
Extensions
Edited by Daniel Forgues, Jun 19 2011
Comments