A080225 Number of perfect divisors of n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1
Keywords
Examples
Divisors of n = 84: {1,2,3,4,6,7,12,14,21,24,28,42}, two of them are perfect: 6 = A000396(1) and 28 = A000396(2), therefore a(84) = 2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Perfect Number.
- Wikipedia, Perfect number.
Programs
-
Haskell
a080225 n = length [d | d <- takeWhile (<= n) a000396_list, mod n d == 0] -- Reinhard Zumkeller, Jan 20 2012
-
Mathematica
a[n_] := DivisorSum[n, 1 &, DivisorSigma[-1, #] == 2 &]; Array[a, 100] (* Amiram Eldar, Dec 31 2023 *)
-
PARI
a(n) = sumdiv(n, d, sigma(d, -1) == 2); \\ Amiram Eldar, Dec 31 2023
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A335118 = 0.2045201... . - Amiram Eldar, Dec 31 2023
Comments