cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080225 Number of perfect divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 07 2003

Keywords

Comments

Number of divisors d of n with sigma(d) = 2*d (sigma = A000203).

Examples

			Divisors of n = 84: {1,2,3,4,6,7,12,14,21,24,28,42}, two of them are perfect: 6 = A000396(1) and 28 = A000396(2), therefore a(84) = 2.
		

Crossrefs

Programs

  • Haskell
    a080225 n = length [d | d <- takeWhile (<= n) a000396_list, mod n d == 0]
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, DivisorSigma[-1, #] == 2 &]; Array[a, 100] (* Amiram Eldar, Dec 31 2023 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d, -1) == 2); \\ Amiram Eldar, Dec 31 2023

Formula

A080224(n) + a(n) + A080226(n) = A000005(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A335118 = 0.2045201... . - Amiram Eldar, Dec 31 2023