cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A080224 Number of abundant divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 07 2003

Keywords

Comments

Number of divisors d of n with sigma(d)>2*d (sigma = A000203)
a(n)>0 iff n is abundant: a(A005101(n))>0, a(A000396(n))=0 and a(A005100(n))=0; a(A091191(n))=1; a(A091192(n))>1; a(A091193(n))=n and a(m)<>n for m < A091193(n). - Reinhard Zumkeller, Dec 27 2003

Examples

			Divisors of n=24: {1,2,3,4,6,8,12,24}, two of them are abundant: 12=A005101(1) and 24=A005101(4), therefore a(24)=2.
		

Crossrefs

Programs

Formula

a(n) + A080225(n) + A080226(n) = A000005(n).
From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294937(d).
a(n) = A294929(n) + A294937(n).
a(n) = 1 iff A294930(n) = 1.
(End)

A080226 Number of deficient divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 4, 2, 5, 4, 4, 2, 5, 3, 4, 4, 5, 2, 6, 2, 6, 4, 4, 4, 5, 2, 4, 4, 6, 2, 6, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 5, 4, 6, 4, 4, 2, 7, 2, 4, 6, 7, 4, 6, 2, 6, 4, 7, 2, 6, 2, 4, 6, 6, 4, 6, 2, 7, 5, 4, 2, 7, 4, 4, 4, 7, 2, 8, 4, 6, 4, 4, 4, 7, 2, 6, 6, 7, 2, 6, 2, 7, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 07 2003

Keywords

Comments

Number of divisors d of n with sigma(d)<2*d (sigma = A000203).

Examples

			All 4 divisors of n=21 are deficient: 1=A005100(1), 3=A005100(3), 7=A005100(6) and 21=A005100(17), therefore a(21)=4.
		

Crossrefs

Programs

Formula

A080224(n) + A080225(n) + a(n) = A000005(n).
a(n) = Sum_{d|n} A294934(d) = A294926(n) + A294934(n). - Antti Karttunen, Nov 14 2017

A341620 Number of nondeficient divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 6, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 5, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 6, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 21 2021

Keywords

Comments

Number of nondeficient numbers (A023196) dividing n.

Crossrefs

Differs from a derived sequence A341624 for the first time at n=120, where a(120)=8, while A341624(120)=1.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, DivisorSigma[1, #] >= 2*# &]; Array[a, 120] (* Amiram Eldar, Feb 22 2021 *)
  • PARI
    A294936(n) = (sigma(n, -1)>=2); \\ From A294936.
    A341620(n) = sumdiv(n,d,A294936(d));
    
  • PARI
    A341620(n) = sumdiv(n,d,(sigma(d)>=(2*d)));

Formula

a(n) = Sum_{d|n} A294936(d).
a(n) = A294927(n) + A294936(n).
a(n) = A080224(n) + A080225(n) = A000005(n) - A080226(n).
a(n) >= A337690(n) for all n.
a(n) = 1 iff A341619(n) = 1.

A378662 Number of divisors d of n such that sigma(d) <= 2*d < A003961(d), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 0, 0, 3, 0, 0, 2, 3, 0, 3, 0, 4, 0, 0, 1, 3, 0, 0, 1, 3, 0, 3, 0, 2, 3, 0, 0, 4, 1, 2, 0, 2, 0, 3, 0, 4, 1, 0, 0, 4, 0, 0, 3, 5, 0, 1, 0, 2, 1, 3, 0, 4, 0, 0, 2, 2, 0, 2, 0, 4, 3, 0, 0, 5, 0, 0, 0, 3, 0, 5, 1, 2, 0, 0, 0, 5, 0, 3, 2, 3, 0, 1, 0, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2024

Keywords

Comments

Number of terms of A341614 that divide n.
Claim: a(n) > 0 if and only if A003961(n) > 2*n [i.e., n is in A246282]. That a(n) must be zero when n is in A246281 is obvious, as is also that a(n) > 0 when n is a term of A341614 [as then A378664(n) = n], but that a(n) > 0 for all abundant numbers (A005101) is slightly less clear. So the claim boils down to this: All abundant numbers have at least one (by necessity a proper) divisor d|n such that it is in A341614, i.e., sigma(d) <= 2*d < A003961(d), i.e., that for abundant numbers n, A337345(n) is always strictly greater than A080224(n). Equivalently, of the all nonabundant divisors d of an abundant number, at least one is primeshift-abundant, i.e., A003961(d) > 2*d. This has been proved Dec 11 2024 by Jianing Song in A337372. The claim given in A378658 also follows from that proof.

Crossrefs

Inverse Möbius transform of A341612.
Cf. A246281 (positions of 0's), A246282 (of terms > 0).
Cf. also A337372, A378658.

Programs

  • Mathematica
    Table[Length@ Select[Divisors[n], DivisorSigma[1, #] <= 2 # < (Times @@ Map[Power @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi[p] + 1], e}] - Boole[# == 1]) &], {n, 105}] (* Michael De Vlieger, Dec 06 2024 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A341612(n) = ((sigma(n)<=(2*n))&&((2*n)<A003961(n)));
    A378662(n) = sumdiv(n,d,A341612(d));

Formula

a(n) = Sum_{d|n} A341612(d).
a(n) = A337345(n) - A080224(n).
a(n) = A080225(n) + A378663(n).

A147645 Number of distinct Mersenne primes dividing n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 09 2008

Keywords

Comments

a(n) = m first occurs at n = A098918(m). - Robert Israel, Feb 03 2020

Examples

			a(21)=2 because 1, 3, 7 and 21 are divisors of 21. Then 21 has two divisors that are Mersenne primes (A000668): 3 and 7.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for i from 1 do
    m:= numtheory:-mersenne([i]);
    if m > N then break fi;
    for j from m by m to N do
        V[j]:= V[j]+1
    od od:
    convert(V,list); # Robert Israel, Feb 03 2020
  • PARI
    A147645(n) = { my(m=3,s=0); while(m<=n, s += (isprime(m)*!(n%m)); m += (m+1)); (s); }; \\ Antti Karttunen, May 12 2022

Formula

From Antti Karttunen, May 12 2022: (Start)
a(n) = A154402(n) - A353786(n)
a(n) = a(2*n) = a(A000265(n)).
a(n) <= A331410(n). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A173898 = 0.516454... . - Amiram Eldar, Dec 31 2023

A097796 Number of partitions of n into perfect numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 25 2004

Keywords

Comments

a(2*n) = A097795(n).
a(A204878(n)) = 0; a(A204879(n)) > 0.

Examples

			a(90)=2: 90 = 15*6 = 15*A000396(1) = 3*28 + 1*6 = 3*A000396(2) + 1*A000396(1).
		

Crossrefs

Programs

  • Haskell
    a097796 = p a000396_list where
       p _ 0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 20 2012
  • Mathematica
    f[x_] := Product[-(1/(-1 + x^i)), {i, {6, 28, 496, 8128, 33550336}}]; CoefficientList[Series[f[x], {x, 0, 1000}], x] (* Ben Branman, Jan 07 2012 *)

A097795 Number of partitions of 2*n into perfect numbers.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 25 2004

Keywords

Comments

a(n) = A097796(2*n).

Examples

			a(45)=2: 2*45 = 90 = 15*6 = 15*A000396(1) = 3*28 + 1*6 = 3*A000396(2) + 1*A000396(1).
		

Crossrefs

A378663 Number of divisors d of n such that sigma(d) < 2*d < A003961(d), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 3, 0, 1, 0, 2, 1, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 4, 0, 0, 1, 2, 0, 0, 1, 3, 0, 2, 0, 2, 3, 0, 0, 3, 1, 2, 0, 2, 0, 2, 0, 3, 1, 0, 0, 3, 0, 0, 3, 5, 0, 0, 0, 2, 1, 3, 0, 3, 0, 0, 2, 2, 0, 1, 0, 4, 3, 0, 0, 3, 0, 0, 0, 3, 0, 4, 1, 2, 0, 0, 0, 4, 0, 3, 2, 3, 0, 0, 0, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2024

Keywords

Comments

Number of terms of A341615 that divide n.

Crossrefs

Inverse Möbius transform of A341613.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A341613(n) = ((sigma(n)<(2*n))&&((2*n)<A003961(n)));
    A378663(n) = sumdiv(n,d,A341613(d));

Formula

a(n) = Sum_{d|n} A341613(d).
a(n) = A337345(n) - A341620(n).
a(n) = A378662(n) - A080225(n).

A147648 Number of distinct even superperfect numbers dividing n.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 09 2008

Keywords

Comments

Also, numbers of distinct superperfect numbers dividing n, if there are no odd superperfect numbers.

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, And[EvenQ@ #, Nest[DivisorSigma[1, #] &, #, 2] == 2 #] &] &, 105] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    A147648(n) = sumdiv(n,d,(!(d%2)&&(sigma(sigma(d))==(2*d)))); \\ Antti Karttunen, Nov 06 2018

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=1} 1/A061652(n) = 0.828388215042... . - Amiram Eldar, Jan 01 2024
Showing 1-9 of 9 results.