cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A080224 Number of abundant divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 07 2003

Keywords

Comments

Number of divisors d of n with sigma(d)>2*d (sigma = A000203)
a(n)>0 iff n is abundant: a(A005101(n))>0, a(A000396(n))=0 and a(A005100(n))=0; a(A091191(n))=1; a(A091192(n))>1; a(A091193(n))=n and a(m)<>n for m < A091193(n). - Reinhard Zumkeller, Dec 27 2003

Examples

			Divisors of n=24: {1,2,3,4,6,8,12,24}, two of them are abundant: 12=A005101(1) and 24=A005101(4), therefore a(24)=2.
		

Crossrefs

Programs

Formula

a(n) + A080225(n) + A080226(n) = A000005(n).
From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294937(d).
a(n) = A294929(n) + A294937(n).
a(n) = 1 iff A294930(n) = 1.
(End)

A187793 Sum of the deficient divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 18, 12, 10, 14, 24, 24, 31, 18, 15, 20, 22, 32, 36, 24, 18, 31, 42, 40, 28, 30, 36, 32, 63, 48, 54, 48, 19, 38, 60, 56, 30, 42, 48, 44, 84, 78, 72, 48, 34, 57, 93, 72, 98, 54, 42, 72, 36, 80, 90, 60, 40, 62, 96, 104, 127, 84, 72, 68, 126, 96, 74, 72, 27
Offset: 1

Views

Author

Timothy L. Tiffin, Jan 06 2013

Keywords

Comments

Sum of divisors d of n with sigma(d) < 2*d.
a(n) = sigma(n) when n is itself also deficient.
Also, a(n) agrees with the terms in A117553 except when n is a multiple (k > 1) of either a perfect number or a primitive abundant number.
Notice that a(1) = 1. The remaining fixed points are given by A125310. - Timothy L. Tiffin, Jun 23 2016
a(A028982(n)) is an odd integer. Also, if n is an odd abundant number that is not a perfect square and n has an odd number of abundant divisors (e.g., 945 has one abundant divisor and 4725 has three abundant divisors), then a(n) will also be odd: a(945) = 975 and a(4725) = 2675. - Timothy L. Tiffin, Jul 18 2016

Examples

			a(12) = 10 because the divisors of 12 are 1, 2, 3, 4, 6, 12; of these, 1, 2, 3, 4 are deficient, and they add up to 10.
		

Crossrefs

Programs

  • Maple
    A187793 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if numtheory[sigma](d) < 2*d then
                a := a+d ;
            end if ;
        end do:
        a ;
    end proc:# R. J. Mathar, May 08 2019
  • Mathematica
    Table[Total@ Select[Divisors@ n, DivisorSigma[1, #] < 2 # &], {n, 72}] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    a(n)=sumdiv(n,d,if(sigma(d,-1)<2,d,0)) \\ Charles R Greathouse IV, Jan 07 2013

Formula

From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294934(d)*d.
a(n) = A294886(n) + (A294934(n)*n).
a(n) + A187794(n) + A187795(n) = A000203(n).
(End)

Extensions

a(54) corrected by Charles R Greathouse IV, Jan 07 2013

A080225 Number of perfect divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 07 2003

Keywords

Comments

Number of divisors d of n with sigma(d) = 2*d (sigma = A000203).

Examples

			Divisors of n = 84: {1,2,3,4,6,7,12,14,21,24,28,42}, two of them are perfect: 6 = A000396(1) and 28 = A000396(2), therefore a(84) = 2.
		

Crossrefs

Programs

  • Haskell
    a080225 n = length [d | d <- takeWhile (<= n) a000396_list, mod n d == 0]
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, DivisorSigma[-1, #] == 2 &]; Array[a, 100] (* Amiram Eldar, Dec 31 2023 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d, -1) == 2); \\ Amiram Eldar, Dec 31 2023

Formula

A080224(n) + a(n) + A080226(n) = A000005(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A335118 = 0.2045201... . - Amiram Eldar, Dec 31 2023

A341620 Number of nondeficient divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 6, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 5, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 6, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 21 2021

Keywords

Comments

Number of nondeficient numbers (A023196) dividing n.

Crossrefs

Differs from a derived sequence A341624 for the first time at n=120, where a(120)=8, while A341624(120)=1.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, DivisorSigma[1, #] >= 2*# &]; Array[a, 120] (* Amiram Eldar, Feb 22 2021 *)
  • PARI
    A294936(n) = (sigma(n, -1)>=2); \\ From A294936.
    A341620(n) = sumdiv(n,d,A294936(d));
    
  • PARI
    A341620(n) = sumdiv(n,d,(sigma(d)>=(2*d)));

Formula

a(n) = Sum_{d|n} A294936(d).
a(n) = A294927(n) + A294936(n).
a(n) = A080224(n) + A080225(n) = A000005(n) - A080226(n).
a(n) >= A337690(n) for all n.
a(n) = 1 iff A341619(n) = 1.

A294926 Number of proper divisors of n that are deficient (A005100).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 3, 4, 1, 4, 1, 5, 3, 3, 1, 5, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 5, 1, 3, 3, 6, 1, 6, 1, 5, 5, 3, 1, 6, 2, 5, 3, 5, 1, 5, 3, 6, 3, 3, 1, 7, 1, 3, 5, 6, 3, 6, 1, 5, 3, 7, 1, 6, 1, 3, 5, 5, 3, 6, 1, 7, 4, 3, 1, 7, 3, 3, 3, 7, 1, 8, 3, 5, 3, 3, 3, 7, 1, 5, 5, 7, 1, 6, 1, 7, 7
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && DivisorSigma[1, #] < 2*# &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
  • PARI
    A294926(n) = sumdiv(n, d, (dAntti Karttunen, Nov 14 2017

Formula

a(n) = Sum_{d|n, dA294934(d).
a(n) = A080226(n) - A294934(n).
a(n) + A294927(n) = A032741(n).

A335543 Numbers with an equal number of deficient and abundant divisors.

Original entry on oeis.org

144, 324, 336, 756, 900, 1176, 1848, 2100, 2184, 2940, 3200, 3520, 4000, 4160, 4400, 5200, 5952, 10880, 11440, 12160, 12348, 12544, 13600, 14720, 15200, 16368, 17360, 18304, 18400, 18560, 19344, 19360, 19404, 22932, 23200, 27040, 28600, 29988, 33516, 40572, 47124
Offset: 1

Views

Author

Amiram Eldar, Jun 13 2020

Keywords

Comments

This sequence is infinite. For example, 3200*p is a term for all primes p >= 257.
The least odd term of this sequence is a(1273824) = 3010132125.

Examples

			144 is a term since it has 7 deficient divisors: {1, 2, 3, 4, 8, 9, 16} and 7 abundant divisors: {12, 18, 24, 36, 48, 72, 144}.
		

Crossrefs

Programs

  • Mathematica
    ab[n_] := DivisorSigma[1, n] - 2n; eqdivQ[n_] := Count[(abs = ab/@Divisors[n]), ?(# > 0 &)] == Count[abs, ?(# < 0 &)]; Select[Range[50000], eqdivQ]

Formula

Numbers k such that A080224(k) = A080226(k).

A335544 Numbers with more abundant divisors than deficient divisors.

Original entry on oeis.org

216, 240, 288, 360, 432, 480, 504, 540, 576, 600, 648, 672, 720, 792, 840, 864, 936, 960, 972, 1008, 1056, 1080, 1120, 1152, 1200, 1248, 1260, 1296, 1320, 1344, 1440, 1512, 1560, 1584, 1620, 1680, 1728, 1800, 1872, 1920, 1944, 2016, 2112, 2160, 2240, 2268, 2304
Offset: 1

Views

Author

Amiram Eldar, Jun 13 2020

Keywords

Comments

This sequence is infinite. For example, 216*p is a term for all primes p.
The least odd term of this sequence is a(16317321) = 638512875.
Apparently, this sequence has an asymptotic density of about 0.025.

Examples

			216 is a term since it has 8 abundant divisors, {12, 18, 24, 36, 54, 72, 108, 216}, and only 7 deficient divisors, {1, 2, 3, 4, 8, 9, 27}.
		

Crossrefs

Programs

  • Mathematica
    ab[n_] := DivisorSigma[1, n] - 2n; moreAbQ[n_] := Count[(abs = ab/@Divisors[n]), ?(# > 0 &)] > Count[abs, ?(# < 0 &)]; Select[Range[50000], moreAbQ]

Formula

Numbers k such that A080224(k) > A080226(k).

A357460 Numbers whose number of deficient divisors is equal to their number of nondeficient divisors.

Original entry on oeis.org

72, 108, 120, 168, 180, 252, 420, 528, 560, 624, 1188, 1224, 1368, 1400, 1404, 1632, 1656, 1824, 1836, 1960, 1980, 2040, 2052, 2088, 2208, 2232, 2280, 2340, 2484, 2664, 2760, 2772, 2784, 2856, 2952, 2976, 3060, 3096, 3132, 3192, 3200, 3276, 3348, 3384, 3420, 3432
Offset: 1

Views

Author

Amiram Eldar, Sep 29 2022

Keywords

Comments

Numbers k such that A080226(k) = A341620(k).
This sequence is infinite: if p >= 17 is a prime then 72*p is a term.
The least odd term of this sequence is a(36126824) = A357461(1) = 3010132125.
Since the number of divisors of any term is even, none of the terms are squares.
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 1, 10, 131, 1172, 12003, 120647, 1199147, 11992293, 120089446, ... . Apparently, the asymptotic density of this sequence exists and is equal to about 0.012.

Examples

			72 is a term since it has 12 divisors, 6 of them (1, 2, 3, 4, 8 and 9) are deficient and 6 (6, 12, 18, 24, 36 and 72) are not.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := DivisorSum[n, If[DivisorSigma[-1, #] < 2, 1, -1] &] == 0; Select[Range[3500], q]
  • PARI
    is(n) = sumdiv(n, d, if(sigma(d, -1) < 2, 1, -1)) == 0;

A335542 Numbers with a record number of deficient divisors.

Original entry on oeis.org

1, 2, 4, 8, 16, 30, 60, 90, 150, 210, 315, 630, 990, 1575, 1890, 2310, 3465, 4620, 6930, 11550, 13860, 17325, 20790, 30030, 39270, 45045, 60060, 78540, 90090, 117810, 131670, 180180, 196350, 219450, 225225, 255255, 270270, 353430, 395010, 450450, 510510, 746130
Offset: 1

Views

Author

Amiram Eldar, Jun 13 2020

Keywords

Comments

The corresponding numbers of deficient divisors are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16, 17, 18, 22, ...

Examples

			2 is in the sequence since it is the least number with 2 deficient divisors, 1 and 2. The next number with more than 2 deficient divisors is 4, which has 3 deficient divisors, 1, 2, and 4.
		

Crossrefs

Programs

Formula

Numbers m such that A080226(m) > A080226(k) for all k < m.
Showing 1-9 of 9 results.