A274338 The period 10 sequence of the iterated sum of deficient divisors function (A187793) starting at 52.
52, 98, 171, 260, 308, 336, 76, 140, 78, 84, 52, 98, 171, 260, 308, 336, 76, 140, 78, 84, 52, 98, 171, 260, 308, 336, 76, 140, 78, 84, 52, 98, 171, 260, 308, 336, 76, 140, 78, 84, 52, 98, 171, 260, 308, 336, 76, 140, 78, 84, 52, 98, 171, 260, 308, 336, 76, 140, 78
Offset: 1
Examples
a(1) = 52; a(2) = sigma(52) = 98; a(3) = sigma(98) = 171; a(4) = sigma(171) = 260; a(5) = sigma(260) - 260 - 20 = 308; a(6) = sigma(308) - 308 - 28 = 336; a(7) = 1 + 2 + 3 + 4 + 7 + 8 + 14 + 16 + 21 = 76 [since 336 has more abundant divisors than deficient ones]; a(8) = sigma(76) = 140; a(9) = sigma(140) - 140 - 70 - 28 - 20 = 78; a(10) = sigma(78) - 78 - 6 = 84; a(11) = sigma(84) - 84 - 42 - 28 - 12 - 6 = 52 = a(1).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).
Crossrefs
Programs
-
PARI
a(n)=n=n%10; if(n>0, sumdiv(a(n-1),d,if(sigma(d,-1)<2,d,0)), 84) \\ Charles R Greathouse IV, Jun 23 2016
-
PARI
Vec(x*(52 + 98*x + 171*x^2 + 260*x^3 + 308*x^4 + 336*x^5 + 76*x^6 + 140*x^7 + 78*x^8 + 84*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^50)) \\ Colin Barker, Jan 30 2020
Formula
a(n+10) = a(n).
G.f.: x*(52 + 98*x + 171*x^2 + 260*x^3 + 308*x^4 + 336*x^5 + 76*x^6 + 140*x^7 + 78*x^8 + 84*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Jan 30 2020
Comments