cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A378532 Dirichlet convolution of A296075 and A378525.

Original entry on oeis.org

1, 0, 0, -2, 0, -3, 0, -2, -2, -3, 0, -4, 0, -3, -3, -2, 0, -4, 0, -4, -3, -3, 0, -2, -2, -3, -2, -4, 0, -6, 0, -2, -3, -3, -3, -1, 0, -3, -3, -2, 0, -6, 0, -4, -4, -3, 0, -2, -2, -4, -3, -4, 0, -2, -3, -2, -3, -3, 0, 0, 0, -3, -4, -2, -3, -6, 0, -4, -3, -6, 0, 0, 0, -3, -4, -4, -3, -6, 0, -2, -2, -3, 0, 0, -3, -3, -3, -2
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Inverse Möbius transform of A378534.

Crossrefs

Cf. A033879, A296075, A378531 (Dirichlet inverse), A378534 (Möbius transform), A378525, A378542.
Cf. also A378218.

Programs

Formula

a(n) = Sum_{d|n} A296075(d)*A378525(n/d).
a(n) = Sum_{d|n} A378534(d).

A378432 Dirichlet inverse of A296075, where A296075 is the sum of deficiencies of divisors of n.

Original entry on oeis.org

1, -2, -3, 1, -5, 8, -7, 0, 1, 12, -11, -3, -13, 16, 17, 0, -17, -4, -19, -5, 23, 24, -23, 2, 1, 28, -1, -7, -29, -44, -31, 0, 35, 36, 37, 5, -37, 40, 41, 2, -41, -60, -43, -11, -7, 48, -47, 4, 1, -8, 53, -13, -53, 0, 57, 2, 59, 60, -59, 25, -61, 64, -9, 0, 67, -92, -67, -17, 71, -92, -71, 6, -73, 76, -9, -19, 79
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Crossrefs

Cf. A033879.
Dirichlet inverse of A296075.
Möbius transform of A323910.

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA296075(n/d) * a(d).

A033879 Deficiency of n, or 2n - (sum of divisors of n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 10, 8, 22, -12, 19, 10, 14, 0, 28, -12, 30, 1, 18, 14, 22, -19, 36, 16, 22, -10, 40, -12, 42, 4, 12, 20, 46, -28, 41, 7, 30, 6, 52, -12, 38, -8, 34, 26, 58, -48, 60, 28, 22, 1, 46, -12, 66, 10, 42, -4, 70, -51
Offset: 1

Views

Author

Keywords

Comments

Records for the sequence of the absolute values are in A075728 and the indices of these records in A074918. - R. J. Mathar, Mar 02 2007
a(n) = 1 iff n is a power of 2. a(n) = n - 1 iff n is prime. - Omar E. Pol, Jan 30 2014
If a(n) = 1 then n is called a least deficient number or an almost perfect number. All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2. See A000079. - Jianing Song, Oct 13 2019
It is not known whether there are any -1's in this sequence. See comment in A033880. - Antti Karttunen, Feb 02 2020

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - _Omar E. Pol_, Dec 27 2013
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Cf. A000396 (positions of zeros), A005100 (of positive terms), A005101 (of negative terms).
Cf. A141545 (positions of a(n) = -12).
For this sequence applied to various permutations of natural numbers and some other sequences, see A323174, A323244, A324055, A324185, A324546, A324574, A324575, A324654, A325379.

Programs

Formula

a(n) = -A033880(n).
a(n) = A005843(n) - A000203(n). - Omar E. Pol, Dec 14 2008
a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013
G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017
a(n) = A286385(n) - A252748(n). - Antti Karttunen, May 13 2017
From Antti Karttunen, Dec 29 2017: (Start)
a(n) = Sum_{d|n} A083254(d).
a(n) = Sum_{d|n} A008683(n/d)*A296075(d).
a(n) = A065620(A295881(n)) = A117966(A295882(n)).
a(n) = A294898(n) + A000120(n).
(End)
From Antti Karttunen, Jun 03 2019: (Start)
Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples:
a(n) = A325314(n) - A325313(n) = A325814(n) - A034460(n) = A325978(n) - A325977(n).
a(n) = A325976(n) - A325826(n) = A325959(n) - A325969(n) = A003958(n) - A324044(n).
a(n) = A326049(n) - A326050(n) = A326055(n) - A326054(n) = A326044(n) - A326045(n).
a(n) = A326058(n) - A326059(n) = A326068(n) - A326067(n).
a(n) = A326128(n) - A326127(n) = A066503(n) - A326143(n).
a(n) = A318878(n) - A318879(n).
a(A228058(n)) = A325379(n). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023

Extensions

Definition corrected by N. J. A. Sloane, Jul 04 2005

A066218 Numbers k such that sigma(k) = Sum_{j|k, j

Original entry on oeis.org

198, 608, 11322, 20826, 56608, 3055150, 565344850, 579667086, 907521650, 8582999958, 13876688358, 19244570848, 195485816050, 255701999358, 1038635009650, 1410759512050, 3308222326688, 6293446033554, 12859914783762, 15343909268584, 18359652610976, 19142664182226, 41584649258178, 45090324794034, 56293124233554
Offset: 1

Views

Author

Joseph L. Pe, Dec 17 2001

Keywords

Comments

I propose this generalization of perfect numbers: for an arithmetical function f, the "f-perfect numbers" are the n such that f(n) = sum of f(k) where k ranges over proper divisors of n. The usual perfect numbers are i-perfect numbers, where i is the identity function. This sequence lists the sigma-perfect numbers. It is not hard to see that the EulerPhi-perfect numbers are the powers of 2 and the d-perfect numbers are the squares of primes (d(n) denotes the number of divisors of n).
Problems: Find an expression generating sigma-perfect numbers. Are there infinitely many of these? Find other interesting sets generated by other f's. 3.
a(17) > 2*10^12. - Giovanni Resta, Jun 20 2013
Numbers k such that A296075(k) = 0. - Amiram Eldar, Apr 16 2024
No more terms < 10^14. - Jud McCranie, Nov 28 2024

Examples

			Proper divisors of 198 = {1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99}; sum of their sigma values = 1 + 3 + 4 + 12 + 13 + 12 + 39 + 36 + 48 + 144 + 156 = 468 = sigma(198).
		

Crossrefs

Programs

  • Mathematica
    f[ x_ ] := DivisorSigma[ 1, x ]; Select[ Range[ 1, 10^5 ], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]
  • PARI
    is(n)=sumdiv(n,d,sigma(d))==2*sigma(n) \\ Charles R Greathouse IV, Mar 09 2014

Formula

Integer n = p1^k1 * p2^k2 * ... * pm^km is in this sequence if and only if g(p1^k1)*g(p2^k2)*...*g(pm^km)=2, where g(p^k) = (p^(k+2)-(k+2)*p+k+1)/(p^(k+1)-1)/(p-1) for prime p and integer k>=1. - Max Alekseyev, Oct 23 2008

Extensions

More terms from Naohiro Nomoto, May 07 2002
a(7)-a(8) from Farideh Firoozbakht, Sep 18 2006
a(9)-a(13) from Donovan Johnson, Jun 25 2012
a(14)-a(16) from Giovanni Resta, Jun 20 2013
a(17)-a(25) from Jud McCranie, Nov 28 2024

A296074 Sum of deficiencies of the proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 3, 6, 1, 5, 1, 8, 7, 4, 1, 9, 1, 9, 9, 12, 1, 2, 5, 14, 8, 13, 1, 16, 1, 5, 13, 18, 11, 3, 1, 20, 15, 8, 1, 24, 1, 21, 18, 24, 1, -9, 7, 27, 19, 25, 1, 20, 15, 14, 21, 30, 1, -1, 1, 32, 24, 6, 17, 40, 1, 33, 25, 40, 1, -27, 1, 38, 32, 37, 17, 48, 1, -1, 22, 42, 1, 9, 21, 44, 31, 26, 1, 18, 19, 45, 33, 48, 23, -36, 1, 53, 36, 33
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2017

Keywords

Examples

			For n = 6, whose proper divisors are 1, 2, 3, their deficiencies are 1, 1, 2, thus a(6) = 1+1+2 = 4.
For n = 12, whose proper divisors are 1, 2, 3, 4, 6, their deficiencies are 1, 1, 2, 1, 0, thus a(12) = 1+1+2+1+0 = 5.
		

Crossrefs

Cf. A033879.
Cf. also A294886, A294887, A294888, A294889, A293438 (product of).

Programs

  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 0; a[n_] := Module[{f = FactorInteger[n]}, 3 * Times @@ f1 @@@ f - Times @@ f2 @@@ f - 2*n]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
  • PARI
    A033879(n) = ((2*n)-sigma(n));
    A296074(n) = sumdiv(n,d,(dA033879(d));

Formula

a(n) = Sum_{d|n, dA033879(d).
a(n) = A296075(n) - A033879(n).
Sum_{k=1..n} a(k) ~ (Pi^2/4 - Pi^4/72 - 1) * n^2. - Amiram Eldar, Dec 04 2023

A318679 Sum of abundancies of abundant divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 16, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 26, 0, 0, 0, 12, 0, 12, 0, 0, 0, 0, 0, 44, 0, 0, 0, 0, 0, 15, 0, 8, 0, 0, 0, 66, 0, 0, 0, 0, 0, 12, 0, 0, 0, 4, 0, 89, 0, 0, 0, 0, 0, 12, 0, 38, 0, 0, 0, 72, 0, 0, 0, 4, 0, 69, 0, 0, 0, 0, 0, 104, 0, 0, 0, 19, 0, 12, 0, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSigma[1, n] - 2 n; Array[DivisorSum[#, f, f@ # >= 0 &] &, 105] (* Michael De Vlieger, Sep 04 2018 *)
  • PARI
    A318679(n) = sumdiv(n,d,d=sigma(d)-(2*d); (d>0)*d);

Formula

a(n) = Sum_{d|n} [A033880(d) > 0]*A033880(d).
a(n) = A318678(n) - A296075(n).

A318448 a(n) = Sum_{d|n} A294898(d), where A294898(d) = A005187(d) - sigma(d).

Original entry on oeis.org

0, 0, 0, 0, 2, -2, 3, 0, 3, 2, 7, -8, 9, 4, 4, 0, 14, -4, 15, -2, 10, 12, 18, -22, 18, 16, 13, 1, 24, -14, 25, 0, 23, 26, 24, -31, 33, 28, 27, -14, 37, -6, 38, 13, 15, 34, 41, -52, 41, 22, 40, 19, 48, -10, 42, -10, 45, 46, 53, -76, 55, 48, 29, 0, 55, 12, 63, 34, 57, 18, 66, -98, 69, 64, 42, 37, 64, 16, 73, -42, 51, 72, 78, -74, 74, 74, 73, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2018

Keywords

Comments

Inverse Möbius transform of A294898.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A294898(d).
a(n) = A318447(n) + A294898(n).
a(n) = A318446(n) - A007429(n).
a(n) = A296075(n) - A093653(n).

A318678 Sum of deficiencies of deficient divisors of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 4, 7, 4, 8, 8, 11, 5, 13, 12, 13, 5, 17, 9, 19, 9, 19, 20, 23, 6, 24, 24, 22, 13, 29, 16, 31, 6, 31, 32, 33, 10, 37, 36, 37, 10, 41, 24, 43, 25, 30, 44, 47, 7, 48, 34, 49, 31, 53, 23, 53, 14, 55, 56, 59, 17, 61, 60, 46, 7, 63, 40, 67, 43, 67, 40, 71, 11, 73, 72, 58, 49, 75, 48, 79, 11, 63, 80, 83, 25, 83, 84, 85, 26, 89, 33, 89, 61
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := 2 n - DivisorSigma[1, n]; Array[DivisorSum[#, f, f@ # >= 0 &] &, 92] (* Michael De Vlieger, Sep 04 2018 *)
  • PARI
    A318678(n) = sumdiv(n,d,d=d+d-sigma(d); (d>0)*d);

Formula

a(n) = Sum_{d|n} [A033879(d) > 0]*A033879(d).
a(n) = A296075(n) + A318679(n).

A378531 Dirichlet convolution of A378432 and A378542.

Original entry on oeis.org

1, 0, 0, 2, 0, 3, 0, 2, 2, 3, 0, 4, 0, 3, 3, 6, 0, 4, 0, 4, 3, 3, 0, 14, 2, 3, 2, 4, 0, 6, 0, 10, 3, 3, 3, 18, 0, 3, 3, 14, 0, 6, 0, 4, 4, 3, 0, 30, 2, 4, 3, 4, 0, 14, 3, 14, 3, 3, 0, 30, 0, 3, 4, 22, 3, 6, 0, 4, 3, 6, 0, 48, 0, 3, 4, 4, 3, 6, 0, 30, 6, 3, 0, 30, 3, 3, 3, 14, 0, 30, 3, 4, 3, 3, 3, 74, 0, 4, 4, 18
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Möbius transform of A378533.

Crossrefs

Cf. A008683, A378532 (Dirichlet inverse), A378432, A378533 (inverse Möbius transform), A378542.
Cf. also A345182.

Programs

Formula

a(n) = Sum_{d|n} A378432(d)*A378542(n/d).
a(n) = Sum_{d|n} A008683(d)*A378533(n/d).
Showing 1-9 of 9 results.