cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A066363 The floor[n^(3/4)]-perfect numbers, where f-perfect numbers for an arithmetical function f is defined in A066218.

Original entry on oeis.org

2, 4, 8, 10, 16, 98, 236, 244, 268, 284, 292, 316, 332, 638, 2198, 2282, 2338, 2422, 2674, 4653, 12274, 30753, 65018, 225267, 231478, 289605, 376995, 422684, 449756, 453092, 515175, 521925, 522825, 524325, 527025, 527925, 528225, 534075, 538275, 539025, 540975
Offset: 1

Views

Author

Joseph L. Pe, Dec 20 2001

Keywords

Crossrefs

Cf. A066218.

Programs

  • Mathematica
    f[x_] := Floor[ x^(3/4)]; Select[ Range[ 2, 10^4], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

Extensions

a(21)-a(41) from Amiram Eldar, Sep 26 2019

A238905 The tau(sigma)-perfect numbers, where the set of f-perfect numbers for an arithmetical function f is defined in A066218.

Original entry on oeis.org

6, 15, 22, 33, 39, 57, 69, 111, 129, 141, 183, 201, 214, 219, 237, 309, 453, 471, 489, 573, 579, 633, 669, 813, 831, 849, 939, 993, 1101, 1149, 1191, 1263, 1371, 1389, 1461, 1519, 1569, 1623, 1641, 1821, 1839, 1893, 1942, 1983, 2019, 2073, 2199, 2253, 2271
Offset: 1

Views

Author

Paolo P. Lava, Mar 07 2014

Keywords

Examples

			Aliquot divisors of 39 are 1, 3, 13. Then tau(sigma(1)) + tau(sigma(3)) + tau(sigma(13)) = 1 + 3 + 4 = 8 and tau(sigma(39)) = 8.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,i,n;
    for n from 1 to q do a:=divisors(n); b:=0;
    for i from 1 to nops(a)-1 do b:=b+tau(sigma(a[i])); od;
    if tau(sigma(n))=b then print(n); fi; od; end: P(10^6);
  • Mathematica
    q[n_] := DivisorSum[n, DivisorSigma[0, DivisorSigma[1, #]] &, # < n &] == DivisorSigma[0, DivisorSigma[1, n]]; Select[Range[2300], q] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    isok(n) = numdiv(sigma(n)) == sumdiv(n, d, (dMichel Marcus, Mar 08 2014

A066226 The sigma(EulerPhi)-perfect numbers, where the set of f-perfect numbers for an arithmetical function f is defined in A066218.

Original entry on oeis.org

2, 88, 328, 5128, 9075, 327688, 1310728, 2066056, 2259976, 188186624, 560889856, 847020032, 1342177288
Offset: 1

Views

Author

Joseph L. Pe, Dec 18 2001

Keywords

Comments

These are all the terms less than 10^5. Problem: Find an expression generating all the terms.

Examples

			Let f(n) = sigma(EulerPhi(n)). The proper divisors of 88 are {1, 2, 4, 8, 11, 22, 44}; adding their f-values: 1 + 1 + 3 + 7 + 18 + 18 + 42 = 90 = f(88). Hence 88 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, EulerPhi[x]]; Select[ Range[ 1, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

Extensions

a(6)-a(13) from Amiram Eldar, Sep 26 2019

A066228 The EulerPhi(sigma(EulerPhi))-perfect numbers, where the f-perfect numbers for an arithmetical function f are defined in A066218.

Original entry on oeis.org

2, 4, 28, 40, 448, 500380
Offset: 1

Views

Author

Joseph L. Pe, Dec 18 2001

Keywords

Comments

There are no terms between 449 and 10^5. Are there any more terms? Are there infinitely many?
No more terms below 10^9. - Amiram Eldar, Sep 26 2019

Examples

			Let f(n) = EulerPhi(sigma(EulerPhi(n))). Proper divisors of 28 = {1, 2, 4, 7, 14}; the sum of their f-values = 1+1+2+4+4 = 12 = f(28); hence 28 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[DivisorSigma[1, EulerPhi[x]]]; Select[ Range[ 1, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

Extensions

a(6) from Amiram Eldar, Sep 26 2019

A066238 The floor(n/3)-perfect numbers, where f-perfect numbers for an arithmetical function f are defined in A066218.

Original entry on oeis.org

2, 12, 18, 40, 56, 304, 550, 748, 1504, 3230, 3770, 6976, 29824, 124672, 351351, 382772, 510464, 537248, 698528, 791264, 1081568, 1279136, 2065408, 2279072, 211855016, 561841408, 731378944, 3365232128, 3557004544
Offset: 1

Views

Author

Joseph L. Pe, Dec 19 2001

Keywords

Comments

It appears that there are more floor(n/N)-perfect numbers the larger N is. (Here N = 3.)

Examples

			Let f(n) = floor(n/3). Then f(12) = 6 = 3+2+1+0 = f(6)+f(4)+f(3)+f(1); so 12 is a term of the sequence.
		

Crossrefs

Cf. A066218.

Programs

  • Mathematica
    f[x_] := Floor[x/3]; Select[ Range[2, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

Extensions

a(14)-a(29) from Amiram Eldar, Sep 26 2019

A066239 The floor(1.001*x)-perfect numbers, where f-perfect numbers for an arithmetical function f are defined in A066218.

Original entry on oeis.org

6, 28, 496, 32445, 130304, 388076, 199272950
Offset: 1

Views

Author

Joseph L. Pe, Dec 19 2001

Keywords

Comments

The floor(n)-perfect numbers are the ordinary perfect numbers. The first three floor[1.001x]-perfect numbers are also ordinary perfect numbers and the first discrepancy comes at the fourth term, 32445 (the fourth perfect number is 8128). Consider other coefficients > 1 but < 1.001. There is some kind of continuity working here. The first discrepancies, if they exist, come at later and later terms as these coefficients are made closer to 1.

Examples

			Let f(n) = floor(1.001*n). Then f(6) = 6 = 3+2+1 = f(3)+f(2)+f(1); so 6 is a term of the sequence.
		

Crossrefs

Cf. A066218.

Programs

  • Mathematica
    f[x_] := Floor[1.001*x]; Select[ Range[1, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

Extensions

a(5)-a(7) from Amiram Eldar, Sep 26 2019

A066240 The floor(n/2)-perfect numbers, where f-perfect numbers for an arithmetical function f are defined in A066218.

Original entry on oeis.org

18, 20, 70, 104, 464, 1952, 45356, 91388, 130304, 254012, 388076, 437745, 522752, 8382464, 134193152
Offset: 1

Views

Author

Joseph L. Pe, Dec 19 2001

Keywords

Examples

			Let f(n) = floor(n/2). Then f(18) = 9 = 4+3+1+1+0 = f(9)+f(6)+f(3)+f(2)+f(1); so 18 is a term of the sequence.
		

Crossrefs

Cf. A066218.

Programs

  • Mathematica
    f[x_] := Floor[x/2]; Select[ Range[ 1, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

Extensions

a(7)-a(15) from Amiram Eldar, Sep 26 2019

A066242 The floor((log(x))^2)-perfect numbers, where f-perfect numbers for an arithmetical function f are defined in A066218.

Original entry on oeis.org

2, 18, 20, 32, 45, 63
Offset: 1

Views

Author

Joseph L. Pe, Dec 19 2001

Keywords

Examples

			Let f(n) = floor((log(x))^2). Then f(18) = 8 = 4+3+1+0+0 = f(9)+f(6)+f(3)f(2)+f(1); so 18 is a term of the sequence.
		

Programs

  • Mathematica
    f[x_ ] := Floor[Log[x]^2]; Select[ Range[2, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

A066245 Floor(|x*sin(x)|)-perfect numbers, where f-perfect numbers for an arithmetical function f are defined in A066218.

Original entry on oeis.org

3, 6, 10, 34, 50, 91, 222, 364, 1485, 6640, 18579, 775698, 1035507, 1706366, 46388515, 75714802
Offset: 1

Views

Author

Joseph L. Pe, Dec 19 2001

Keywords

Examples

			Let f(n) = floor(|x*sin(x)|). Then f(6) = 1 = 0+1+0 = f(3)+f(2)+f(1); so 6 is a term of the sequence.
		

Crossrefs

Cf. A066218.

Programs

  • Mathematica
    f[x_] := Floor[Abs[x*Sin[x]]]; Select[ Range[2, 10^4], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

Extensions

a(11)-a(16) from Amiram Eldar, Sep 26 2019

A066361 The floor(n^(.9999))-perfect numbers, where f-perfect numbers for an arithmetical function f is defined in A066218.

Original entry on oeis.org

2, 18, 17816, 116624
Offset: 1

Views

Author

Joseph L. Pe, Dec 20 2001

Keywords

Comments

Despite the closeness of f(n) = floor(n^(.9999)) to floor(n) (which generates the usual perfect numbers), the perfect numbers generated by these functions are quite different.

Crossrefs

Cf. A066218.

Programs

  • Mathematica
    f[x_] := Floor[x^(.9999)]; Select[ Range[2, 10^6], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]
Showing 1-10 of 23 results. Next