cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A080226 Number of deficient divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 4, 2, 5, 4, 4, 2, 5, 3, 4, 4, 5, 2, 6, 2, 6, 4, 4, 4, 5, 2, 4, 4, 6, 2, 6, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 5, 4, 6, 4, 4, 2, 7, 2, 4, 6, 7, 4, 6, 2, 6, 4, 7, 2, 6, 2, 4, 6, 6, 4, 6, 2, 7, 5, 4, 2, 7, 4, 4, 4, 7, 2, 8, 4, 6, 4, 4, 4, 7, 2, 6, 6, 7, 2, 6, 2, 7, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 07 2003

Keywords

Comments

Number of divisors d of n with sigma(d)<2*d (sigma = A000203).

Examples

			All 4 divisors of n=21 are deficient: 1=A005100(1), 3=A005100(3), 7=A005100(6) and 21=A005100(17), therefore a(21)=4.
		

Crossrefs

Programs

Formula

A080224(n) + A080225(n) + a(n) = A000005(n).
a(n) = Sum_{d|n} A294934(d) = A294926(n) + A294934(n). - Antti Karttunen, Nov 14 2017

A294927 Number of proper divisors of n that are nondeficient (A023196).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && DivisorSigma[1, #] >= 2*# &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
  • PARI
    A294927(n) = sumdiv(n, d, (d=(2*d)));

Formula

a(n) = Sum_{d|n, dA294936(d).
a(n) + A294926(n) = A032741(n).

A294929 Number of proper divisors of n that are abundant (A005101).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Examples

			The proper divisors of 24 are 1, 2, 3, 4, 6, 8, 12. Only one of these, 12, is abundant (in A005101), thus a(24) = 1.
The proper divisors of 120 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60. Six of these are abundant: 12, 20, 24, 30, 40, 60, thus a(120) = 6.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, dA294937(d).
a(n) = A080224(n) - A294937(n).
a(n) + A294928(n) = A032741(n).

A294886 Sum of deficient proper divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 10, 1, 10, 9, 15, 1, 15, 1, 22, 11, 14, 1, 18, 6, 16, 13, 28, 1, 36, 1, 31, 15, 20, 13, 19, 1, 22, 17, 30, 1, 48, 1, 40, 33, 26, 1, 34, 8, 43, 21, 46, 1, 42, 17, 36, 23, 32, 1, 40, 1, 34, 41, 63, 19, 72, 1, 58, 27, 74, 1, 27, 1, 40, 49, 64, 19, 84, 1, 46, 40, 44, 1, 52, 23, 46, 33, 92, 1, 90, 21
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Comments

Sum of divisors of n smaller than n that are deficient numbers (in A005100).

Examples

			Proper divisors of 90 are: 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45. Of these 1, 2, 3, 5, 9, 10, 15 and 45 are in A005100, thus a(90) = 1+2+3+5+9+10+15+45 = 90.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, # < n && DivisorSigma[1, #] < 2*# &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
  • PARI
    A294886(n) = sumdiv(n, d, (d
    				

Formula

a(n) = Sum_{d|n, dA294934(d)*d.
a(n) = A187793(n) - (A294934(n)*n).
a(n) + A294887(n) = A001065(n).

A294928 Number of proper divisors of n that are nonabundant (A263837).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 6, 2, 3, 3, 5, 1, 7, 1, 5, 3, 3, 3, 6, 1, 3, 3, 6, 1, 7, 1, 5, 5, 3, 1, 7, 2, 5, 3, 5, 1, 6, 3, 7, 3, 3, 1, 8, 1, 3, 5, 6, 3, 7, 1, 5, 3, 7, 1, 7, 1, 3, 5, 5, 3, 7, 1, 7, 4, 3, 1, 9, 3, 3, 3, 7, 1, 9, 3, 5, 3, 3, 3, 8, 1, 5, 5, 7, 1, 7, 1, 7, 7
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Examples

			The seven proper divisors of 24 are 1, 2, 3, 4, 6, 8, 12. All except 12 are nonabundant (in A263837), thus a(24) = 6.
		

Crossrefs

Differs from A032741 for the first time at n=24.
Cf. also A294901.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && DivisorSigma[1, #] <= 2*# &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
  • PARI
    A294928(n) = sumdiv(n, d, (d
    				

Formula

a(n) = Sum_{d|n, dA294935(d).
a(n) + A294929(n) = A032741(n).
Showing 1-5 of 5 results.