cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294927 Number of proper divisors of n that are nondeficient (A023196).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && DivisorSigma[1, #] >= 2*# &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
  • PARI
    A294927(n) = sumdiv(n, d, (d=(2*d)));

Formula

a(n) = Sum_{d|n, dA294936(d).
a(n) + A294926(n) = A032741(n).

A294929 Number of proper divisors of n that are abundant (A005101).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Examples

			The proper divisors of 24 are 1, 2, 3, 4, 6, 8, 12. Only one of these, 12, is abundant (in A005101), thus a(24) = 1.
The proper divisors of 120 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60. Six of these are abundant: 12, 20, 24, 30, 40, 60, thus a(120) = 6.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, dA294937(d).
a(n) = A080224(n) - A294937(n).
a(n) + A294928(n) = A032741(n).

A294888 Sum of nonabundant proper divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 24, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 25, 1, 22, 17, 30, 1, 54, 1, 40, 33, 26, 1, 40, 8, 43, 21, 46, 1, 48, 17, 64, 23, 32, 1, 46, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 33, 1, 40, 49, 64, 19, 90, 1, 46, 40, 44, 1, 86, 23, 46, 33, 92, 1, 96, 21
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Comments

Sum of divisors of n smaller than n that are nonabundant numbers (in A263837).

Examples

			Proper divisors of 90 are 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45. Of these 1, 2, 3, 5, 6, 9, 10, 15 and 45 are in A263837, thus a(90) = 1+2+3+5+6+9+10+15+45 = 96.
		

Crossrefs

Cf. A294900 (fixed points).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Boole[# < n && DivisorSigma[1, #] <= 2#] * #&];
    Array[a, 100] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    A294888(n) = sumdiv(n, d, (d
    				

Formula

a(n) = Sum_{d|n, dA294935(d)*d.
a(n) + A294889(n) = A001065(n).

A294926 Number of proper divisors of n that are deficient (A005100).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 3, 4, 1, 4, 1, 5, 3, 3, 1, 5, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 5, 1, 3, 3, 6, 1, 6, 1, 5, 5, 3, 1, 6, 2, 5, 3, 5, 1, 5, 3, 6, 3, 3, 1, 7, 1, 3, 5, 6, 3, 6, 1, 5, 3, 7, 1, 6, 1, 3, 5, 5, 3, 6, 1, 7, 4, 3, 1, 7, 3, 3, 3, 7, 1, 8, 3, 5, 3, 3, 3, 7, 1, 5, 5, 7, 1, 6, 1, 7, 7
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && DivisorSigma[1, #] < 2*# &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
  • PARI
    A294926(n) = sumdiv(n, d, (dAntti Karttunen, Nov 14 2017

Formula

a(n) = Sum_{d|n, dA294934(d).
a(n) = A080226(n) - A294934(n).
a(n) + A294927(n) = A032741(n).
Showing 1-4 of 4 results.