A080233 Triangle T(n,k) obtained by taking differences of consecutive pairs of row elements of Pascal's triangle A007318.
1, 1, 0, 1, 1, -1, 1, 2, 0, -2, 1, 3, 2, -2, -3, 1, 4, 5, 0, -5, -4, 1, 5, 9, 5, -5, -9, -5, 1, 6, 14, 14, 0, -14, -14, -6, 1, 7, 20, 28, 14, -14, -28, -20, -7, 1, 8, 27, 48, 42, 0, -42, -48, -27, -8, 1, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9
Offset: 0
Examples
Triangle begins as: 1; 1, 0; 1, 1, -1; 1, 2, 0, -2; 1, 3, 2, -2, -3; 1, 4, 5, 0, -5, -4; 1, 5, 9, 5, -5, -9, -5; 1, 6, 14, 14, 0, -14, -14, -6; 1, 7, 20, 28, 14, -14, -28, -20, -7; 1, 8, 27, 48, 42, 0, -42, -48, -27, -8; 1, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9; ...
Programs
-
Mathematica
Table[Binomial[n, k] - Binomial[n, k - 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)
-
PARI
{T(n, k) = if( n<0 || k>n, 0, binomial(n, k) - binomial(n, k-1))}; /* Michael Somos, Nov 25 2016 */
Formula
T(n, k) = if(k>n, 0, binomial(n, k)-binomial(n, k-1)).
Comments