A080251 Paired decomposition of tetrahedral numbers A000292 arranged as number triangle.
1, 2, 2, 3, 3, 4, 4, 4, 6, 6, 5, 5, 8, 8, 9, 6, 6, 10, 10, 12, 12, 7, 7, 12, 12, 15, 15, 16, 8, 8, 14, 14, 18, 18, 20, 20, 9, 9, 16, 16, 21, 21, 24, 24, 25, 10, 10, 18, 18, 24, 24, 28, 28, 30, 30, 11, 11, 20, 20, 27, 27, 32, 32, 35, 35, 36
Offset: 0
Examples
Rows are 1; 2, 2; 3, 3, 4; 4, 4, 6, 6; 5, 5, 8, 8, 9; ... Row sums are 1, 4, 10, 20, ... or C(n+3,3) = A000292(n-1).
Links
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
Programs
-
Mathematica
T[n_, k_] := If[EvenQ[k], (k+2)(2n-k+2)/4, (k+1)(2n-k+3)/4]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 13 2018 *) T[ n_, k_] := -(Floor(k/2) + 1)*(Floor(k/2) - n - 1); (* Michael Somos, Oct 12 2022 *)
-
PARI
{T(n, k) = -(k\2 + 1)*(k\2 - n - 1)}; /* Michael Somos, Oct 12 2022 */
Formula
T(n,k) = [k<=n]*floor((k+2)/2)*(n-k+floor((k+3)/2)). - Paul Barry, Jun 14 2010
Also generated by the product of pairs of integers 0 <= r1,r2 <= n whose sum is n+2.
Viewed as a square array: T(n,2*k) = k*(k+n); T(n,2*k+1) = (k+1)*(k+n). - Luc Rousseau, Dec 11 2017
Extensions
Edited by Ken Joffaniel M Gonzales, Jul 04 2010
Comments