cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A080416 Stirling-like number triangle defined by paired decomposition of C(n+3,3) = A000292.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 10, 1, 1, 32, 67, 20, 1, 1, 80, 376, 252, 35, 1, 1, 192, 1909, 2560, 742, 56, 1, 1, 448, 9094, 22928, 12346, 1848, 84, 1, 1, 1024, 41479, 189120, 177599, 46912, 4074, 120, 1, 1, 2304, 183412, 1472704, 2318149
Offset: 0

Views

Author

Paul Barry, Feb 17 2003

Keywords

Comments

Note that the Stirling numbers of the second kind are generated in a similar fashion by decomposing the triangular numbers C(n+2,2) as {1}, {1,2}, {1,2,3}, .... The defining sequence A000292 appears as the subdiagonal when the triangle is arranged in lower-triangular form. The second column is A001787.
Gives the number of ways to construct pairs of k-block partitions from 1 to n such that the sum of the minima of the i-th block of the first partition and the (k-i+1)th block of the second partition is n+1. - Ken Joffaniel M Gonzales, Jun 13 2010

Examples

			Rows are
  {1},
  {1,  1},
  {1,  4,  1},
  {1, 12, 10,  1},
  {1, 32, 67, 20,  1},
  ...
		

Crossrefs

Programs

  • Mathematica
    s[b_, n_, k_] := s[b, n, k] = Which[n==k==0, 1, n==0, 0, k==0, 0, True, s[b+1, n-1, k-1] + k*b*s[b, n-1, k]]
    Table[s[0, n+2, k+2], {n, 0, 10}, {k, 0, n}] // Flatten
    (* a specialization of equation (9) in the Corcino et al. paper *)
    (* Mikhail Lavrov, Oct 12 2022 *)
    T[ n_, k_] := If[n < 0, 0, SeriesCoefficient[x^k / Product[1 + x*(Floor[j/2] + 1)*(Floor[j/2] - k - 1), {j,0,k}], {x,0,n}]]; (* Michael Somos, Oct 12 2022 *)
  • PARI
    {T(n, k) = if(n<0, 0, polcoeff(x^k / prod(j=0, k, 1 + x*(j\2 + 1)*(j\2 - k - 1) + x*O(x^n)), n))}; /* Michael Somos, Oct 12 2022 */

Formula

Columns are generated as follows: Display C(n+3, 3) as row sums of the triangle A080251, or {1}, {2, 2}, {3, 3, 4}, {4, 4, 6, 6}, {5, 5, 8, 8, 9}, ... The columns are then generated by 1/(1-x), 1/(1-2x)^2, 1/((1-3x)^2*(1-4x)), 1/((1-4x)^2*(1-6x)^2), etc.

A180401 Stirling-like sequence obtained from bipartite 0-1 tableaux.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 4, 1, 0, 36, 33, 10, 1, 0, 576, 480, 148, 20, 1, 0, 14400, 10960, 3281, 483, 35, 1, 0, 518400, 362880, 103824, 15552, 1288, 56, 1, 0, 25401600, 16465680, 4479336, 663633, 57916, 2982, 84, 1, 0, 1625702400, 981872640, 253732096, 36690816, 3252624, 181312, 6216, 120, 1
Offset: 1

Views

Author

Ken Joffaniel M Gonzales, Sep 02 2010, Sep 27 2010

Keywords

Comments

Gives the number of ways to construct pairs of permutations of an n-element set into k cycles such that the sum of the minima of the i-th cycle of the first permutation and the (k-i+1)-th cycle of the second permutation is n+1.

Examples

			For n=6, C(6,0)=0, C(6,1)=0, C(6,2)=1, C(6,3)=32, C(6,4)=67, C(6,5)=20, C(6,6)=1
		

Crossrefs

Programs

  • R
    ## Runs on R 2.7.1
    ## Here, beta=r in recurrences
    cnk<-function(n,k,beta=0){
    alpha=0
    as<-function(j){j}
    bs<-function(j){j}
    form.seq<-function(n,fcn){ss<-NULL;for(i in 0:n){ss<-c(ss,fcn(i))};ss}
    seq.a<-form.seq(n+alpha+1,as)
    seq.b<-form.seq(n+beta+1,bs)
    v<-function(i){i}
    w<-function(i){i}
    if(n>k){
    Atab<-combn(1:n-1,n-k)
    Btab<-n-1-Atab+beta
    Atab<-Atab+alpha
    px<-NULL
    for(i in 1:ncol(Atab)){
    partial<-NULL
    for(j in 1:nrow(Atab)){
    partial<-c(partial,(v(seq.a[Atab[j,i]+1])*w(seq.b[Btab[j,i]+1])))
    } # for(j in 1:nrow(Atab))
    px<-c(px,prod(partial))
    }# for(i in 1:ncol(Atab))
    } # if(n>k)
    if(n>k) x<-sum(px)
    if(n==k) x=1
    if(n
    				

Formula

G.f.: sum_{all r=>0} C(n,k) x^r = prod_{all v+w=n,0<=v,w<=n-1} (x+vw)
Symm. f: C(n,k)=sum_{all 0 <=i_1
(i_1*(n-1)-i_1)*(i_2*(n-1)-i_2)*...*(i_{n-k}*(n-1)-i_{n-k})
Recurrences: Let C(n,k;r)=sum_{all 0 <=i_1
(i_1*(r+(n-1)-i_1))*(i_2*(r+(n-1)-i_2))*...*(i_{n-k}*(r+(n-1)-i_{n-k})). Then,
C(n,k)=C(n-1,k-1,1)+(n)C(n-1,k,1)
Showing 1-2 of 2 results.