cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A083928 Inverse function of N -> N injection A080298.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, May 13 2003

Keywords

Comments

a(1)=0 because A080298(0)=1, but a(n) = 0 also for those n which do not occur as values of A080298. All positive natural numbers occur here once.
For example, A057163 = A083928(A057163(A080298(n))), i.e. Catalan bijection A057163 embeds into itself in scale n:2n+1 using the obvious zigzag-tree -> binary tree embedding.

Crossrefs

a(A080298(n)) = n for all n. Cf. A083925-A083927, A083929, A083935.

A057163 Signature-permutation of a Catalan automorphism: Reflect a rooted plane binary tree; Deutsch's 1998 involution on Dyck paths.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 6, 5, 4, 22, 21, 20, 18, 17, 19, 16, 15, 13, 12, 14, 11, 10, 9, 64, 63, 62, 59, 58, 61, 57, 55, 50, 49, 54, 48, 46, 45, 60, 56, 53, 47, 44, 52, 43, 41, 36, 35, 40, 34, 32, 31, 51, 42, 39, 33, 30, 38, 29, 27, 26, 37, 28, 25, 24, 23, 196, 195, 194, 190, 189
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2000

Keywords

Comments

Deutsch shows in his 1999 paper that this automorphism maps the number of doublerises of Dyck paths to number of valleys and height of the first peak to the number of returns, i.e., that A126306(n) = A127284(a(n)) and A126307(n) = A057515(a(n)) hold for all n.
The A000108(n-2) n-gon triangularizations can be reflected over n axes of symmetry, which all can be generated by appropriate compositions of the permutations A057161/A057162 and A057163.
Composition with A057164 gives signature permutation for Donaghey's Map M (A057505/A057506). Embeds into itself in scale n:2n+1 as a(n) = A083928(a(A080298(n))). A127302(a(n)) = A127302(n) and A057123(A057163(n)) = A057164(A057123(n)) hold for all n.

Examples

			This involution (self-inverse permutation) of natural numbers is induced when we reflect the rooted plane binary trees encoded by A014486. E.g., we have A014486(5) = 44 (101100 in binary), A014486(7) = 52 (110100 in binary) and these encode the following rooted plane binary trees, which are reflections of each other:
    0   0             0   0
     \ /               \ /
      1   0         0   1
       \ /           \ /
    0   1             1   0
     \ /               \ /
      1                 1
thus a(5)=7 and a(7)=5.
		

Crossrefs

This automorphism conjugates between the car/cdr-flipped variants of other automorphisms, e.g., A057162(n) = a(A057161(a(n))), A069768(n) = a(A069767(a(n))), A069769(n) = a(A057508(a(n))), A069773(n) = a(A057501(a(n))), A069774(n) = a(A057502(a(n))), A069775(n) = a(A057509(a(n))), A069776(n) = a(A057510(a(n))), A069787(n) = a(A057164(a(n))).
Row 1 of tables A122201 and A122202, that is, obtained with FORK (and KROF) transformation from even simpler automorphism *A069770. Cf. A122351.

Programs

  • Maple
    a(n) = A080300(ReflectBinTree(A014486(n)))
    ReflectBinTree := n -> ReflectBinTree2(n)/2; ReflectBinTree2 := n -> (`if`((0 = n),n,ReflectBinTreeAux(A030101(n))));
    ReflectBinTreeAux := proc(n) local a,b; a := ReflectBinTree2(BinTreeLeftBranch(n)); b := ReflectBinTree2(BinTreeRightBranch(n)); RETURN((2^(A070939(b)+A070939(a))) + (b * (2^(A070939(a)))) + a); end;
    NextSubBinTree := proc(nn) local n,z,c; n := nn; c := 0; z := 0; while(c < 1) do z := 2*z + (n mod 2); c := c + (-1)^n; n := floor(n/2); od; RETURN(z); end;
    BinTreeLeftBranch := n -> NextSubBinTree(floor(n/2));
    BinTreeRightBranch := n -> NextSubBinTree(floor(n/(2^(1+A070939(BinTreeLeftBranch(n))))));
  • Mathematica
    A014486Q[0] = True; A014486Q[n_] := Catch[Fold[If[# < 0, Throw[False], If[#2 == 0, # - 1, # + 1]] &, 0, IntegerDigits[n, 2]] == 0]; tree[n_] := Block[{func, num = Append[IntegerDigits[n, 2], 0]}, func := If[num[[1]] == 0, num = Drop[num, 1]; 0, num = Drop[num, 1]; 1[func, func]]; func]; A057163L[n_] := Function[x, FirstPosition[x, FromDigits[Most@Cases[tree[#] /. 1 -> Reverse@*1, 0 | 1, All, Heads -> True], 2]][[1]] - 1 & /@ x][Select[Range[0, 2^n], A014486Q]]; A057163L[11] (* JungHwan Min, Dec 11 2016 *)

Formula

a(n) = A083927(A057164(A057123(n))).

Extensions

Equivalence with Deutsch's 1998 involution realized Dec 15 2006 and entry edited accordingly by Antti Karttunen, Jan 16 2007

A080293 A014486-encoding of the branch-reduced binomial-mod-2 binary trees.

Original entry on oeis.org

2, 50, 14642, 3969842, 267572689202, 69427226972978, 4581045692538239282, 301220569271221714981682, 1295918094920364850246919050705202, 332029112115571675270693117549056818
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

These are obtained from the stunted binomial-mod-2 zigzag trees (A080263) either by extending each leaf to a branch of two leaves, or by branch-reducing every other such tree.

Crossrefs

a(n) = A014486(A080295(n)). Same sequence in binary: A080294. Breadth-first-wise encoding: A080318. "Moose-trees" obtained from these: A080973. Cf. A080292, A080297.

Formula

A080295 A014486-index of the branch-reduced binomial-mod-2 binary trees.

Original entry on oeis.org

1, 6, 477, 70818, 2208159610, 445557105328, 19185898282602827, 905428099582719818595
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Crossrefs

Formula

a(n) = A080298(A080265(n)).
a(n) = A080979(A080265(2*n)).
a(n) = A080300(A080293(n)).

A080299 A014486-encoding of plane binary trees (Stanley's d) whose interior zigzag-tree (Stanley's c, i.e., tree obtained by discarding the outermost edges of the binary tree) is isomorphic to a valid plane binary tree (Stanley's d).

Original entry on oeis.org

2, 50, 818, 914, 13106, 13202, 14642, 14738, 15506, 209714, 209810, 211250, 211346, 212114, 234290, 234386, 235826, 235922, 236690, 248114, 248210, 248978, 255122, 3355442, 3355538, 3356978, 3357074, 3357842, 3380018, 3380114, 3381554
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

These trees are obtained by replacing each non-root terminal node (a leaf) of the binary tree with a branch of two leaves, i.e., "." -> "\/".

Crossrefs

a(n) = A014486(A080298(n)). Breadth-first-wise encoding: A080313.

Formula

a(n) = A080310(A014486(n)).

A084108 A014486-indices of "Complete Binary Trees".

Original entry on oeis.org

0, 1, 6, 477, 11231586, 17656351387745509, 118547604486270210927391203275078974, 14557702344245589436016960628730576845591277100880695377777962217288601549
Offset: 0

Views

Author

Antti Karttunen, May 13 2003

Keywords

Comments

Fixed points of permutations A069767 and A069768.

Crossrefs

a(n) = A057117(A083942(n)). Also iterates of A080298, i.e., a(1)=A080298(0), a(2)=A080298(A080298(0)), a(3)=A080298(A080298(A080298(0))), etc. Cf. also A083940, A080274.

Formula

a(n) = A080300(A084107(n)).

A080310 Rewrite 0->100 in the binary expansion of n (but leaving single zero as zero) and append 10 to the right.

Original entry on oeis.org

2, 6, 50, 14, 402, 102, 114, 30, 3218, 806, 818, 206, 914, 230, 242, 62, 25746, 6438, 6450, 1614, 6546, 1638, 1650, 414, 7314, 1830, 1842, 462, 1938, 486, 498, 126, 205970, 51494, 51506, 12878, 51602, 12902, 12914, 3230, 52370, 13094, 13106, 3278
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

Also A080303(n)*4 + 2 for n>0.

Crossrefs

Formula

a(n) = A080303(2*n)/2.
Showing 1-7 of 7 results.