cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A080298 Positions of A080299 in A014486.

Original entry on oeis.org

1, 6, 39, 53, 345, 359, 477, 491, 567, 3634, 3648, 3766, 3780, 3856, 5064, 5078, 5196, 5210, 5286, 6065, 6079, 6155, 6595, 42088, 42102, 42220, 42234, 42310, 43518, 43532, 43650, 43664, 43740, 44519, 44533, 44609, 45049, 58884, 58898, 59016
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Crossrefs

a(n) = A080300(A080299(n)).

Formula

a(n) = A080300(A080310(A014486(n)))

A080313 Breadth-first-wise A014486-like encoding of A080299-trees.

Original entry on oeis.org

2, 56, 920, 992, 14744, 14816, 16256, 15896, 15968, 235928, 236000, 237440, 237080, 237152, 260120, 260192, 260480, 254360, 254432, 261632, 255872, 255512, 255584, 3774872, 3774944, 3776384, 3776024, 3776096, 3799064, 3799136, 3799424
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Crossrefs

Same sequence in binary: A080314. Cf. A080312, A080315, A080316.

A080314 Breadth-first-wise A063171-like-encoding of A080299-trees.

Original entry on oeis.org

10, 111000, 1110011000, 1111100000, 11100110011000, 11100111100000, 11111110000000, 11111000011000, 11111001100000, 111001100110011000, 111001100111100000, 111001111110000000, 111001111000011000
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Formula

a(n) = A007088(A080313(n)).

A080310 Rewrite 0->100 in the binary expansion of n (but leaving single zero as zero) and append 10 to the right.

Original entry on oeis.org

2, 6, 50, 14, 402, 102, 114, 30, 3218, 806, 818, 206, 914, 230, 242, 62, 25746, 6438, 6450, 1614, 6546, 1638, 1650, 414, 7314, 1830, 1842, 462, 1938, 486, 498, 126, 205970, 51494, 51506, 12878, 51602, 12902, 12914, 3230, 52370, 13094, 13106, 3278
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

Also A080303(n)*4 + 2 for n>0.

Crossrefs

Formula

a(n) = A080303(2*n)/2.

A084107 A014486-encoding of "Complete Binary Trees".

Original entry on oeis.org

0, 2, 50, 14642, 1016674610, 4489135110542145842, 83940259113354708787282267381662562610, 28755706180189132304920279902696353117047700481289459579932708798287463397682
Offset: 0

Views

Author

Antti Karttunen, May 13 2003

Keywords

Comments

"Complete" or "full binary tree" refers to a unique binary tree of (2^n)-1 nodes with its 2^(n-1) leaves all on the same height (or depth) n-1 (when the root is at height 0). These are depicted at A073346. This differs from "completely binary tree", with which some authors refer to trees more akin to the trees encoded by A080299.

Crossrefs

a(n) = A014486(A084108(n)). Subset of A083941.
Showing 1-5 of 5 results.