cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080315 a(n) = A080313(n)/2.

Original entry on oeis.org

1, 28, 460, 496, 7372, 7408, 8128, 7948, 7984, 117964, 118000, 118720, 118540, 118576, 130060, 130096, 130240, 127180, 127216, 130816, 127936, 127756, 127792, 1887436, 1887472, 1888192, 1888012, 1888048, 1899532, 1899568, 1899712
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Crossrefs

A080312 Positions of A080313 in A014486.

Original entry on oeis.org

1, 8, 55, 64, 493, 502, 625, 603, 612, 5212, 5221, 5344, 5322, 5331, 6878, 6887, 6900, 6521, 6530, 6917, 6653, 6631, 6640, 60462, 60471, 60594, 60572, 60581, 62128, 62137, 62150, 61771, 61780, 62167, 61903, 61881, 61890, 81622, 81631, 81754
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Formula

a(n) = A080300(A080313(n)).

A080299 A014486-encoding of plane binary trees (Stanley's d) whose interior zigzag-tree (Stanley's c, i.e., tree obtained by discarding the outermost edges of the binary tree) is isomorphic to a valid plane binary tree (Stanley's d).

Original entry on oeis.org

2, 50, 818, 914, 13106, 13202, 14642, 14738, 15506, 209714, 209810, 211250, 211346, 212114, 234290, 234386, 235826, 235922, 236690, 248114, 248210, 248978, 255122, 3355442, 3355538, 3356978, 3357074, 3357842, 3380018, 3380114, 3381554
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

These trees are obtained by replacing each non-root terminal node (a leaf) of the binary tree with a branch of two leaves, i.e., "." -> "\/".

Crossrefs

a(n) = A014486(A080298(n)). Breadth-first-wise encoding: A080313.

Formula

a(n) = A080310(A014486(n)).

A080314 Breadth-first-wise A063171-like-encoding of A080299-trees.

Original entry on oeis.org

10, 111000, 1110011000, 1111100000, 11100110011000, 11100111100000, 11111110000000, 11111000011000, 11111001100000, 111001100110011000, 111001100111100000, 111001111110000000, 111001111000011000
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Formula

a(n) = A007088(A080313(n)).
Showing 1-4 of 4 results.