cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080354 First differences of A080353.

Original entry on oeis.org

2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2003

Keywords

Programs

  • Mathematica
    Most[Table[#,3]&/@Table[PadRight[{2},n,1],{n,10}]//Flatten] (* Harvey P. Dale, Dec 08 2019 *)

Formula

Runs are 2^2, (2 1)^3, (2 1 1)^3, (2 1 1 1)^3, ...

A081840 a(1)=0, a(n)=a(n-1)+3 if n is already in the sequence, a(n)=a(n-1)+4 otherwise.

Original entry on oeis.org

0, 4, 8, 11, 15, 19, 23, 26, 30, 34, 37, 41, 45, 49, 52, 56, 60, 64, 67, 71, 75, 79, 82, 86, 90, 93, 97, 101, 105, 108, 112, 116, 120, 123, 127, 131, 134, 138, 142, 146, 149, 153, 157, 161, 164, 168, 172, 176, 179, 183, 187, 190, 194, 198, 202, 205, 209, 213, 217
Offset: 1

Views

Author

Benoit Cloitre, Apr 11 2003

Keywords

Comments

In the Fokkink-Joshi paper, this sequence is the Cloitre (0,0,3,4)-hiccup sequence. - Michael De Vlieger, Jul 29 2025

Crossrefs

Programs

Formula

a(n) = floor(r*n-(2*r+1)/(r-1)) where r = 2+sqrt(3).

A081841 a(1)=0, a(n)=a(n-1)+3 if n is already in the sequence, a(n)=a(n-1)+2 otherwise.

Original entry on oeis.org

0, 2, 4, 7, 9, 11, 14, 16, 19, 21, 24, 26, 28, 31, 33, 36, 38, 40, 43, 45, 48, 50, 52, 55, 57, 60, 62, 65, 67, 69, 72, 74, 77, 79, 81, 84, 86, 89, 91, 94, 96, 98, 101, 103, 106, 108, 110, 113, 115, 118, 120, 123, 125, 127, 130, 132, 135, 137, 139, 142, 144, 147, 149, 151
Offset: 1

Views

Author

Benoit Cloitre, Apr 11 2003

Keywords

Comments

In the Fokkink-Joshi paper, this sequence is the Cloitre (0,0,3,2)-hiccup sequence. - Michael De Vlieger, Jul 29 2025

Crossrefs

Programs

Formula

a(1)=0; for n>=1 a(n)=floor(r*n-(4*r-1)/(r+1)) where r=1+sqrt(2)

A081842 a(1)=0, a(n)=a(n-1)+4 if n is already in the sequence, a(n)=a(n-1)+3 otherwise.

Original entry on oeis.org

0, 3, 7, 10, 13, 16, 20, 23, 26, 30, 33, 36, 40, 43, 46, 50, 53, 56, 59, 63, 66, 69, 73, 76, 79, 83, 86, 89, 92, 96, 99, 102, 106, 109, 112, 116, 119, 122, 125, 129, 132, 135, 139, 142, 145, 149, 152, 155, 158, 162, 165, 168, 172, 175, 178, 182, 185, 188, 192, 195
Offset: 1

Views

Author

Benoit Cloitre, Apr 11 2003

Keywords

Comments

In the Fokkink-Joshi paper, this sequence is the Cloitre (0,0,4,3)-hiccup sequence. - Michael De Vlieger, Jul 29 2025

Crossrefs

Programs

  • Mathematica
    Module[{seq={0},n=2},Do[If[MemberQ[seq,n],AppendTo[seq,Last[seq]+4],AppendTo[seq, Last[seq]+3]];n++,{60}];seq] (* Harvey P. Dale, Nov 20 2012 *)

Formula

a(n) = floor(r*n-(4*r-1)/(r+1)) where r = (1/2)*(3+sqrt(13)).
Showing 1-4 of 4 results.