A080359 The smallest integer x > 0 such that the number of primes in (x/2, x] equals n.
2, 3, 13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 113, 139, 157, 173, 181, 191, 193, 199, 239, 241, 251, 269, 271, 283, 293, 313, 349, 353, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 523, 577, 593, 599, 601, 607, 613, 619, 647, 653, 659
Offset: 1
Keywords
Examples
n=5: in 31! five unitary-prime-divisors appear (firstly): {17,19,23,29,31}, while other primes {2,3,5,7,11,13} are at least squared. Thus a(5)=31. Consider a(9)=71. Then the nearest prime < 71/2 is q(9)=31, and between 2q(9) and a(9), i.e., between 62 and 71 there exists a prime (67). - _Vladimir Shevelev_, Aug 14 2009
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..4460 from Daniel Forgues)
- N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, and J. Sondow, Generalized Ramanujan primes, arXiv:1108.0475 [math.NT], 2011.
- N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, and J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13.
- Ethan Berkove and Michael Brilleslyper, Subgraphs of Coprime Graphs on Sets of Consecutive Integers, Integers (2022) Vol. 22, #A47, see p. 8.
- Vladimir Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
- Vladimir Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011.
- Vladimir Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4.
- Jonathan Sondow, MathWorld: Ramanujan Prime
- Jonathan Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010.
- Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635.
Crossrefs
Programs
-
Mathematica
nn=1000; t=Table[0, {nn+1}]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s<=nn && t[[s+1]]==0, t[[s+1]]=k], {k, Prime[3*nn]}]; Rest[t] (* Second program: *) a[1] = 2; a[n_] := a[n] = Module[{x = a[n-1]}, While[(PrimePi[x]-PrimePi[Quotient[x, 2]]) != n, x++ ]; x]; Array[a, 54] (* Jean-François Alcover, Sep 14 2018 *)
-
PARI
a(n) = {my(x = 1); while ((primepi(x) - primepi(x\2)) != n, x++;); x;} \\ Michel Marcus, Jan 15 2014
-
Sage
def A(): i = 0; n = 1 while True: p = prime_pi(i) - prime_pi(i//2) if p == n: yield i n += 1 i += 1 A080359 = A() [next(A080359) for n in range(54)] # Peter Luschny, Sep 03 2014
Formula
Extensions
Definition corrected by Jonathan Sondow, Aug 10 2008
Shrunk title and moved part of title to comments by John W. Nicholson, Sep 18 2011
Comments