A080365 Composite numbers k whose smallest and largest prime factors are unitary prime factors.
6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 90, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158
Offset: 1
Keywords
Examples
k=90 is not a prime; 90 = 2*3*3*5; extremal prime factors are 2 and 5; gcd(2, 90/2) = gcd(5, 90/5) = 1, so 2 and 5 are unitary prime divisors of 90, thus 90 is in the sequence.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..3000
Programs
-
GAP
D:=List(Filtered([2..160],i->not IsPrime(i)),Factors);; a:=[];; for i in D do if Gcd(i[1],Product(i)/i[1])=1 and Gcd(i[Length(i)],Product(i)/i[Length(i)])=1 then Add(a,Product(i)); fi; od; a; # Muniru A Asiru, Jul 10 2018~
-
Mathematica
ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] mi[x_] := Part[Flatten[FactorInteger[x]], 1] k=0; Do[s=mi[n]; s1=ma[n]; If[Equal[GCD[s, n/s], 1]&&Equal[GCD[s1, n/s1], 1]&&!PrimeQ[n], Print[n]], {n, 2, 256}]
-
PARI
lista(nn) = {forcomposite(n=1, nn, my(f=factor(n)[,1], p = vecmin(f), q = vecmax(f)); if ((gcd(p, n/p) == 1) && (gcd(q, n/q) == 1), print1(n, ", ")););} \\ Michel Marcus, Jul 09 2018