cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A080368 a(n) is the least unitary prime divisor of n, or 0 if no such prime divisor exists.

Original entry on oeis.org

0, 2, 3, 0, 5, 2, 7, 0, 0, 2, 11, 3, 13, 2, 3, 0, 17, 2, 19, 5, 3, 2, 23, 3, 0, 2, 0, 7, 29, 2, 31, 0, 3, 2, 5, 0, 37, 2, 3, 5, 41, 2, 43, 11, 5, 2, 47, 3, 0, 2, 3, 13, 53, 2, 5, 7, 3, 2, 59, 3, 61, 2, 7, 0, 5, 2, 67, 17, 3, 2, 71, 0, 73, 2, 3, 19, 7, 2, 79, 5, 0, 2, 83, 3, 5, 2, 3, 11, 89, 2, 7, 23, 3, 2
Offset: 1

Views

Author

Labos Elemer, Feb 21 2003

Keywords

Examples

			For n = 252100 = 2*2*3*5*5*7*11*11, the unitary prime divisors are {3,7}, the smallest is 3, so a(252100) = 3.
		

Crossrefs

Cf. A001694 (positions of zeros).
Cf. A277698 for a variant which gives 1's instead of 0's for numbers with no unitary prime divisors (A001694).

Programs

  • Haskell
    a080368 n = if null us then 0 else fst $ head us
      where us = filter ((== 1) . snd) $ zip (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jul 23 2014
    
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; gb[x_] := GCD[ba[x], x/ba[x]]; fpg[x_] := Flatten[Position[gb[x], 1]]; upd[x_] := Part[ba[x], fpg[x]]; mxu[x_] := Max[upd[x]]; miu[x_] := Min[upd[x]]; Do[If[Equal[upd[n], {}], Print[0]]; If[ !Equal[upd[n], {}], Print[miu[n]]], {n, 2, 256}]
    Table[If[Or[n == 1, Length@ # == 0], 0, First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 94}] (* Michael De Vlieger, Oct 30 2016 *)
    a[n_] := If[(p = Select[FactorInteger[n], Last[#] == 1 &][[;; , 1]]) == {}, 0, Min[p]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Aug 17 2024 *)
  • PARI
    a(n) = {my(f = factor(n), pmin = 0); for(i = 1, #f~, if(f[i, 2] == 1, if(pmin == 0, pmin = f[i, 1], if(f[i, 1] < pmin, pmin = f[i, 1])))); pmin;} \\ Amiram Eldar, Aug 17 2024
  • Python
    from sympy import factorint, prime, primepi, isprime, primefactors
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a028234(n):
        f = factorint(n)
        return 1 if n==1 else n/(min(f)**f[min(f)])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a277697(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a277697(a028234(n))
    def a(n): return 0 if a277697(n)==0 else prime(a277697(n)) # Indranil Ghosh, May 16 2017
    
  • Scheme
    (define (A080368 n) (if (zero? (A277697 n)) 0 (A000040 (A277697 n)))) ;; Antti Karttunen, Oct 28 2016
    

Formula

If A277697(n) = 0, then a(n) = 0, otherwise a(n) = A000040(A277697(n)). - Antti Karttunen, Oct 28 2016
from Amiram Eldar, Aug 17 2024: (Start)
a(n) = 0 if and only of n is powerful (A001694).
a(n) = A020639(A055231(n)) if n is not powerful. (End)

Extensions

a(1)=0 inserted by Reinhard Zumkeller, Jul 23 2014
Showing 1-1 of 1 results.