A080406 Boustrophedon transform of the continued fraction of Pi (cf. A001203).
3, 10, 32, 73, 457, 1994, 6407, 29489, 148253, 852592, 5420543, 37975111, 290066507, 2400720769, 21396506651, 204322668174, 2081209926313, 22523982873141, 258105780607144, 3121989826825492, 39750408190737416
Offset: 0
Examples
We simply apply the Boustrophedon transform to [3,7,15,1,292,1,1,1,...]
Links
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J.Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms
- Index entries for sequences related to boustrophedon transform
Formula
a(n) appears to be asymptotic to C*n!*(2/Pi)^n where C=136.651536367325329682973604897976758877614262731284965133228708820... - Benoit Cloitre and Mark Hudson (mrmarkhudson(AT)hotmail.com)