cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A080508 Triangle whose n-th row contains the least set (ordered lexicographically) of n distinct positive integers whose geometric mean is an integer.

Original entry on oeis.org

1, 1, 4, 1, 2, 4, 1, 2, 3, 216, 1, 2, 3, 4, 324, 1, 2, 3, 4, 5, 6075000, 1, 2, 3, 4, 5, 6, 30375000, 1, 2, 3, 4, 5, 6, 7, 750453558750000, 1, 2, 3, 4, 5, 6, 7, 8, 19699405917187500, 1, 2, 3, 4, 5, 6, 7, 8, 9, 459652804734375000, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9652708899421875000
Offset: 1

Views

Author

Amarnath Murthy, Mar 20 2003

Keywords

Comments

The n-th row has the form {1,2,...,n-1,x}, where x is as small as possible.

Examples

			Triangle begins:
  1;
  1, 4;
  1, 2, 4;
  1, 2, 3, 216;
  1, 2, 3,   4, 324;
  1, 2, 3,   4,   5, 6075000;
  ...
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F;
      F:= ifactors((n-1)!)[2];
      mul(t[1]^(n-(t[2] mod n)),t=F)
    end proc:
    f(2):= 4:
    seq(op([seq(j,j=1..i-1),f(i)]),i=1..20); # Robert Israel, Nov 04 2018
  • Mathematica
    MapAt[{First@ #, 4 Last@ #} &, Array[Append[Range[# - 1], Apply[Times, Prime@ Range@ PrimePi[# - 1]]^#/(# - 1)!] &, 11], 2] // Flatten (* Michael De Vlieger, Nov 05 2018 *)

Extensions

More terms using A080509 from Michel Marcus, Nov 04 2018

A186944 Geometric mean of n-th row of A080508.

Original entry on oeis.org

1, 2, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310, 30030, 30030, 30030, 30030, 510510, 510510, 9699690, 9699690, 9699690, 9699690, 223092870, 223092870, 223092870, 223092870, 223092870, 223092870, 6469693230, 6469693230, 200560490130, 200560490130
Offset: 1

Views

Author

Michel Marcus, Aug 30 2013

Keywords

Crossrefs

Programs

  • PARI
    a(n) = {if (n == 1, return (1)); if (n == 2, return (2)); f  = factor((n-1)!); prod(i=1, #f~, f[i,1]);} \\ Michel Marcus, Aug 30 2013
    
  • PARI
    a(n) = if(n==2, 2, prod(i=1,primepi(n-1),prime(i))) \\ Jeppe Stig Nielsen, Nov 04 2018

Formula

For n != 2, a(n) = A034386(n-1). - Jeppe Stig Nielsen, Nov 04 2018
Showing 1-2 of 2 results.