cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080509 Last term in n-th row of A080508.

Original entry on oeis.org

1, 4, 4, 216, 324, 6075000, 30375000, 750453558750000, 19699405917187500, 459652804734375000, 9652708899421875000, 578346405423301688948883281250000, 111331683043985575122660031640625000, 77892265302487151682927242578030755976166730468750000
Offset: 1

Views

Author

Amarnath Murthy, Mar 20 2003

Keywords

Examples

			For n=5, first four terms of row are 1, 2, 3, 4, with product 24 = 2^3*3^1. So last term is 2^(5-3)*3^(5-1) = 2^2*3^4 = 324.
		

Crossrefs

Cf. A080508.

Programs

  • Mathematica
    MapAt[4 # &, Array[Apply[Times, Prime@ Range@ PrimePi[# - 1]]^#/(# - 1)! &, 14], 2] (* Michael De Vlieger, Nov 05 2018 *)
  • PARI
    a(n) = {if (n == 1, return (1)); if (n == 2, return (2^2)); f  = factor((n-1)!); prod(i = 1, #f~, f[i,1]^(n - f[i,2]));} \\ Michel Marcus, Aug 30 2013
    
  • PARI
    a(n) = if(n==2, 4, prod(i=1,primepi(n-1),prime(i))^n/(n-1)!) \\ Jeppe Stig Nielsen, Nov 04 2018

Formula

For n!=2, a(n) = (A034386(n - 1))^n / (n - 1)!. - Jeppe Stig Nielsen, Nov 04 2018

Extensions

More terms from Michel Marcus, Aug 30 2013

A186944 Geometric mean of n-th row of A080508.

Original entry on oeis.org

1, 2, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310, 30030, 30030, 30030, 30030, 510510, 510510, 9699690, 9699690, 9699690, 9699690, 223092870, 223092870, 223092870, 223092870, 223092870, 223092870, 6469693230, 6469693230, 200560490130, 200560490130
Offset: 1

Views

Author

Michel Marcus, Aug 30 2013

Keywords

Crossrefs

Programs

  • PARI
    a(n) = {if (n == 1, return (1)); if (n == 2, return (2)); f  = factor((n-1)!); prod(i=1, #f~, f[i,1]);} \\ Michel Marcus, Aug 30 2013
    
  • PARI
    a(n) = if(n==2, 2, prod(i=1,primepi(n-1),prime(i))) \\ Jeppe Stig Nielsen, Nov 04 2018

Formula

For n != 2, a(n) = A034386(n-1). - Jeppe Stig Nielsen, Nov 04 2018

A080504 Triangle whose n-th row contains the least set (ordered lexicographically) of n distinct positive integers whose arithmetic and geometric means are both integers.

Original entry on oeis.org

1, 1, 9, 1, 2, 108, 1, 2, 5, 1000, 1, 2, 3, 4, 1012500, 1, 2, 3, 4, 8, 15552, 1, 2, 3, 4, 5, 6, 25015118625000, 1, 2, 3, 4, 5, 6, 11, 17757684573750000, 1, 2, 3, 4, 5, 6, 7, 8, 19699405917187500, 1, 2, 3, 4, 5, 6, 7, 8, 14, 295491088757812500, 1, 2, 3, 4, 5, 6, 7
Offset: 1

Views

Author

Amarnath Murthy, Mar 20 2003

Keywords

Comments

Row n has the form {1,2,...,n-2,x,y} where n-1 <= x < y. x is minimal such that y exists.

Examples

			The fourth row contains 1,2,5,1000, with AM=252 and GM=10. There is no set of the form {1,2,3,y} or {1,2,4,y} whose AM and GM are both integers.
		

Crossrefs

A080511 Triangle whose n-th row contains the least set (ordered lexicographically) of n distinct positive integers whose arithmetic mean is an integer.

Original entry on oeis.org

1, 1, 3, 1, 2, 3, 1, 2, 3, 6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 9, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 21
Offset: 1

Views

Author

Amarnath Murthy, Mar 20 2003

Keywords

Comments

The n-th row is {1,2,...,n-1,x}, where x=n if n is odd, x=3n/2 if n is even.

Examples

			Triangle starts:
1;
1, 3;
1, 2, 3;
1, 2, 3, 6;
1, 2, 3, 4, 5;
1, 2, 3, 4, 5, 9;
1, 2, 3, 4, 5, 6, 7;
1, 2, 3, 4, 5, 6, 7, 12;
...
		

Crossrefs

Programs

  • Maple
    T:= proc(n) $1..n-1, `if`(irem(n, 2)=1, n, 3*n/2) end:
    seq(T(n), n=1..20);  # Alois P. Heinz, Aug 29 2013
  • Mathematica
    row[n_] := Append[Range[n - 1], If[OddQ[n], n, 3 n/2]];
    Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, May 21 2016 *)
Showing 1-4 of 4 results.