cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080586 A run of 3*2^n 1's followed by a run of 3*2^n 2's, for n=0, 1, 2, ...

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2003

Keywords

Crossrefs

Equals 1 + A080584.

Programs

  • Maple
    f := (c,n)->seq(c,i=1..3*2^n); [f(1,0),f(2,0),f(1,1),f(2,1),f(1,2),f(2,2),f(1,3),f(2,3)]; f;
  • Mathematica
    Flatten[Table[{PadRight[{},3*2^n,1],PadRight[{},3*2^n,2]},{n,0,4}]] (* Harvey P. Dale, May 04 2014 *)

Formula

a(n) = ( 3 - (-1)^A079944(A002264(n)) )/2, A079944(A002264(n))=floor(log[2](4*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003
Also a(n) = 1+A079944(A002264(n))=floor(log[2](8*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003