cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080609 Binomial transform of central Delannoy numbers A001850.

Original entry on oeis.org

1, 4, 20, 112, 664, 4064, 25376, 160640, 1027168, 6618496, 42904960, 279503360, 1828222720, 11999226880, 78984381440, 521218322432, 3447059138048, 22840932997120, 151607254267904, 1007830488424448, 6708862677274624
Offset: 0

Views

Author

Emanuele Munarini, Feb 26 2003

Keywords

Comments

The Hankel transform (see A001906 for definition) of this sequence is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
Coefficient of x^n in (1 + 4*x + 2*x^2)^n - N-E. Fahssi, Jan 17 2008
Number of paths from (0,0) to (n,0) using only steps U=(1,1), H=(1,0) and D=(1,-1), U can have 2 colors and H can have 4 colors. - N-E. Fahssi, Jan 27 2008

Programs

  • Mathematica
    Table[SeriesCoefficient[Series[1/Sqrt[1-8x+8x^2], {x, 0, n}], n], {n, 0, 12}]
    Table[LegendreP[n, Sqrt[2]] 8^(n/2), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-8*x+8*x^2)) \\ Joerg Arndt, May 07 2013

Formula

G.f.: 1 / sqrt( 1 - 8*x + 8*x^2 ).
a(n) = Sum_{k=0..n} binomial(n,k) * A001850(k).
E.g.f.: exp(4*x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
Recurrence: n*a(n) = 4*(2*n-1)*a(n-1) - 8*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ sqrt(1+sqrt(2))*(4+2*sqrt(2))^n/sqrt(2*Pi*n). - Vaclav Kotesovec, Oct 13 2012
G.f.: G(0), where G(k)= 1 + 4*x*(1-x)*(4*k+1)/(2*k+1 - 2*x*(1-x)*(2*k+1)*(4*k+3)/(2*x*(1-x)*(4*k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
a(n) = LegendreP_n(sqrt(2))*8^(n/2). - Vladimir Reshetnikov, Nov 01 2015