A080654 Smallest number with exactly n representations as a sum of five positive squares or 0 if no such number exists (cf. A025429).
5, 20, 29, 62, 53, 80, 77, 91, 101, 107, 128, 133, 131, 139, 166, 163, 181, 187, 179, 219, 203, 214, 227, 238, 211, 262, 275, 251, 291, 277, 314, 298, 259, 299, 326, 307, 399, 334, 374, 346, 347, 355, 373, 331, 411, 391, 430, 371, 445, 421, 394, 486, 379, 406
Offset: 1
Examples
a(4) = 62 because there are exactly four representations as a sum of 5 squares: 62 = 1+4+4+4+49 = 1+4+16+16+25 = 4+4+4+25+25 = 4+4+9+9+36.
Links
- Hagen von Eitzen, Table of n, a(n) for n = 1..78107
Programs
-
Mathematica
f[k_] := f[k] = Length[Select[PowersRepresentations[k, 5, 2], #[[1]] > 0 &]]; a[n_] := (k = 1; While[f[k++] != n]; k-1); Array[a, 54] (* Jean-François Alcover, Apr 26 2011 *) f[n_] := f[n] = Block[{c = Range@ Sqrt@ n^2}, Length@ IntegerPartitions[n, {5}, c]]; t = Array[f, 50000, 0]; Table[ Position[t, n, 1, 1], {n, 190}] - 1 (* Robert G. Wilson v, Jun 01 2014 *)
Extensions
More terms from Reinhard Zumkeller, Apr 26 2004
Definition adjusted to cope with otherwise undefined values and b-file extended by Hagen von Eitzen, Jun 05 2014
Comments